Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New ORNL tool gets handle on cropland CO2 emissions

11.02.2009
For the first time, farmers have data that tracks at the county level on-site and off-site energy use and carbon dioxide emissions associated with growing crops in the United States.

This information is vital for examining changes in cropland production and management techniques and could play an even bigger role as more land is devoted to bioenergy crops, said Oak Ridge National Laboratory's Tristram West, lead author of a paper published on line in the Journal of Environmental Quality.

"By looking at changes in energy consumption and CO2 emissions that take place with conventional and alternative crop production, we can do a better job of measuring the effects of various carbon sequestration strategies," West said. "This information can also contribute to future policy directions for energy use and agricultural production."

West and co-authors at the University of Tennessee, Kansas State University and ORNL looked at data from 1990 to 2004 and calculated energy consumption and CO2 emissions from fossil fuel combustion associated with U.S. cropland production. For this project they used a combination of independent survey data, national inventory data, established energy consumption parameters for field-scale operation budgets and CO2 emissions coefficients.

The researchers used a number of other resources, including the University of Tennessee's Agriculture Budget System, which consists of more than 3,500 conventional and alternative management practices for corn, soybean, wheat, sorghum, barley, oat, rice, cotton and hay. As of 2006 these nine crops accounted for about 96 percent of total crop production in the U.S.

On-site energy use and emissions result from fossil fuel combustion that occurs on the farm. Off-site energy and emissions result from fossil fuel combustion linked to the production and transport of fertilizers, pesticides and seeds. Off-site emissions also include those from power plants that produce electricity used on the farm.

The researchers were particularly interested in variations in energy consumption that occur when field management strategies change. For example, they found that the adoption of reduced tillage practices from 1990 to 2004 resulted in a net fossil emissions reduction of 8.8 million metric tons of CO2. Above-average rainfall in 1993 caused fields to be flooded in Minnesota, Iowa, Missouri, Kansas and Nebraska. As a result, farmers planted fewer crops and CO2 emissions fell.

"Changes in agriculture policy and extreme weather events influence agricultural land use and subsequent energy consumption and CO2 emissions associated with crop production," West said.

Looking at the nation's total CO2 picture, less than 2 percent of the 6,090 million metric tons is the result of farming activities. Electricity generation is the largest source of emissions followed by transportation, industrial, residential and commercial use.

Among the findings was that energy use and emissions do not always change proportionately with the area of cropland in production. Instead, they vary by crop and management practices. Researchers also found that on-site emissions can be reduced by half for some crops if farmers change from conventional tillage to no-till.

This study did not take into account nitrogen oxide emissions from the use of nitrogen fertilizers. It did, however, consider CO2 emissions from the production of fertilizer. Those are included in the off-site estimates.

Another key aspect of the project is that the data provide a spatial distribution of carbon flux, which will allow researchers to compare this information to atmospheric measurements that are part of the North American Carbon Program (http://www.nacarbon.org/nacp/).

The authors conclude the paper by saying, "Through continued analyses, we will have a better understanding of how carbon dynamics in U.S. agriculture are being impacted by changes in land cover and land management."

The research was funded by the Department of Energy's biomass program, within the Office of Energy Efficiency and Renewable Energy and the Office of Biological and Environmental Research within the Office of Science. Additional resources were contributed by NASA. Energy and emissions data from U.S. cropland production are archived with the Carbon Dioxide Information Analysis Center (http://cdiac.ornl.gov/carbonmanagement/cropfossilemissions).

UT-Battelle manages Oak Ridge National Laboratory for the Department of Energy. The Journal of Environmental Quality (http://jeq.scijournals.org) is a peer-reviewed, international journal of environmental quality in natural and agricultural ecosystems published six times a year by the American Society of Agronomy, Crop Science Society of America and the Soil Science Society of America.

Ron Walli | EurekAlert!
Further information:
http://www.ornl.gov

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>