Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ocean Dead Zones More Deadly for Marine Life than Previously Predicted

10.01.2014
Acidification within these regions can be equally harmful

Ocean dead zones – regions with levels of oxygen too low to sustain marine life - have grown to become a common feature of coastal regions around the world. A new study published in the January 8 issue of PLOS One by Christopher Gobler, Professor in the School of Marine & Atmospheric Sciences at Stony Brook University and colleagues, has found that low pH levels within these regions represent an additional, previously unappreciated, threat to ocean animals.


Credit: NOAA

One of the organisms used in the study, bay scallops.

For decades, marine biologists have investigated the effects of low oxygen on marine life without considering pH levels. In reality, low oxygen waters are also acidified waters, but studies investigating how these two conditions affect marine life together have been lacking.

In a series of experiments on young bay scallops and hard clams, marine organisms of significant economic and ecological value, the investigators found that the combined effects of low oxygen and low pH led to higher rates of death and slower growth than by either individual factor. Further, in some cases there was negative synergy between these environmental factors, which means that the performance of the animals was worse than predicted by either individual factor.

The paper, Hypoxia and acidification have additive and synergistic negative effects on the growth, survival, and metamorphosis of early life stage bivalves, written by Gobler, SoMAS Prof. Hannes Baumann, and Stony Brook graduate students, Elizabeth Depasquale and Andrew Griffith, has important implications for climate change as well.

“Low oxygen zones in coastal and open ocean ecosystems have expanded in recent decades, a trend that will accelerate with climatic warming,” said Gobler. “There is growing recognition that low oxygen regions of the ocean are also acidified, a condition that will intensify with rising levels of atmospheric CO2 due to the burning of fossil fuels causing ocean acidification. Hence, the low oxygen, low pH conditions used in this study will be increasingly common in the World’s Oceans in the future.”

Dr. Mark Green, a professor at Saint Joseph’s College of Maine and an expert on the effects of ocean acidification on shellfish praised the study.

“The relationship between pH and oxygen is well documented in near shore locales yet, as the authors state, the combined impact of the two has remained unexplored,” said Green. “This is a great paper; it will have an impact, particularly on those scientists that have worked to understand the effect of chronic low oxygen on the physiology of marine organisms.”

Dr. Baumann believes this study may alter how future research into Dead Zones may be conducted.

“We suggest that recently discovered low pH sensitivities in many finfish and shellfish larvae, and the compounded effects of low pH and low oxygen in shellfish relative to each individual parameter should prompt a re-alignment of future studies,” said Baumann. “A comprehensive evaluation of the combined effects of low oxygen and acidification on marine life will be critical for understanding how ocean ecosystems respond to these conditions both today and under future climate change scenarios.”

About the School of Marine and Atmospheric Sciences at Stony Brook University
The School of Marine and Atmospheric Sciences (SoMAS) is the State University of New York's center for marine and atmospheric research, education and public service. With more than 85 faculty and staff and more than 500 students engaged in interdisciplinary research and education, SoMAS is at the forefront of advancing knowledge and discovering and resolving environmental challenges affecting the oceans and atmosphere on both regional and global scales.

Citation: Gobler CJ, Depasquale EL, Griffith AW, Baumann H. 2013. Hypoxia and acidification have additive and synergistic negative effects on the growth, survival, and metamorphosis of early life stage bivalves. PLoS ONE 9(1): e83648. doi:10.1371/journal.pone.0083648

Christopher Gobler | Newswise
Further information:
http://www.stonybrook.edu

More articles from Ecology, The Environment and Conservation:

nachricht Analytical lamps monitor air pollution in cities
26.05.2015 | Heraeus Noblelight GmbH

nachricht Nordic forests under pressure
26.05.2015 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solid-state photonics goes extreme ultraviolet

Using ultrashort laser pulses, scientists in Max Planck Institute of Quantum Optics have demonstrated the emission of extreme ultraviolet radiation from thin dielectric films and have investigated the underlying mechanisms.

In 1961, only shortly after the invention of the first laser, scientists exposed silicon dioxide crystals (also known as quartz) to an intense ruby laser to...

Im Focus: Advance in regenerative medicine

The only professorship in Germany to date, one master's programme, one laboratory with worldwide unique equipment and the corresponding research results: The University of Würzburg is leading in the field of biofabrication.

Paul Dalton is presently the only professor of biofabrication in Germany. About a year ago, the Australian researcher relocated to the Würzburg department for...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Siemens will provide the first H-class power plant technology in Mexico

28.05.2015 | Press release

Merging galaxies break radio silence

28.05.2015 | Physics and Astronomy

A New Kind of Wood Chip: Collaboration Could Yield Biodegradable Computer Chips

28.05.2015 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>