Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ocean Currents Likely to Carry Oil Along Atlantic Coast

07.06.2010
A detailed computer modeling study released today indicates that oil from the massive spill in the Gulf of Mexico might soon extend along thousands of miles of the Atlantic coast and open ocean as early as this summer. The modeling results are captured in a series of dramatic animations produced by the National Center for Atmospheric Research (NCAR) and collaborators.

The research was supported in part by the National Science Foundation, NCAR's sponsor. The results were reviewed by scientists at NCAR and elsewhere, although not yet submitted for peer-review publication.

"I've had a lot of people ask me, 'Will the oil reach Florida?'" says NCAR scientist Synte Peacock, who worked on the study. "Actually, our best knowledge says the scope of this environmental disaster is likely to reach far beyond Florida, with impacts that have yet to be understood."

The computer simulations indicate that, once the oil in the uppermost ocean has become entrained in the Gulf of Mexico's fast-moving Loop Current, it is likely to reach Florida's Atlantic coast within weeks. It can then move north as far as about Cape Hatteras, North Carolina, with the Gulf Stream, before turning east. Whether the oil will be a thin film on the surface or mostly subsurface due to mixing in the uppermost region of the ocean is not known.

The scientists used a powerful computer model to simulate how a liquid released at the spill site would disperse and circulate, producing results that are not dependent on the total amount released. The scientists tracked the rate of dispersal in the top 65 feet of the water and at four additional depths, with the lowest being just above the sea bed.

"The modeling study is analogous to taking a dye and releasing it into water, then watching its pathway," Peacock says.

The dye tracer used in the model has no actual physical resemblance to true oil. Unlike oil, the dye has the same density as the surrounding water, does not coagulate or form slicks, and is not subject to chemical breakdown by bacteria or other forces.

Peacock and her colleagues stress that the simulations are not a forecast because it is impossible to accurately predict the precise location of the oil weeks or months from now. Instead, the simulations provide an envelope of possible scenarios for the oil dispersal. The timing and course of the oil slick will be affected by regional weather conditions and the ever-changing state of the Gulf's Loop Current--neither of which can be predicted more than a few days in advance. The dilution of the oil relative to the source will also be impacted by details such as bacterial degradation, which are not included in the simulations.

What is possible, however, is to estimate a range of possible trajectories, based on the best understanding of how ocean currents transport material. The oil trajectory that actually occurs will depend critically both on the short-term evolution of the Loop Current, which feeds into the Gulf Stream, and on the state of the overlying atmosphere. The flow in the model represents the best estimate of how ocean currents are likely to respond under typical wind conditions.

-----Picking up speed-----

Oil has been pouring into the Gulf of Mexico since April 20 from a blown-out undersea well, the result of an explosion and fire on an oil rig. The spill is located in a relatively stagnant area of the Gulf, and the oil so far has remained relatively confined near the Louisiana and Alabama coastlines, although there have been reports of small amounts in the Loop Current.

The model simulations show that a liquid released in the surface ocean at the spill site is likely to slowly spread as it is mixed by the ocean currents until it is entrained in the Loop Current. At that point, speeds pick up to about 40 miles per day, and when the liquid enters the Atlantic's Gulf Stream it can travel at speeds up to about 100 miles per day, or 3,000 miles per month.

The six model simulations released today all have different Loop Current characteristics, and all provide slightly different scenarios of how the oil might be dispersed. The simulations all bring the oil to south Florida and then up the East Coast. However, the timing of the oil's movement differs significantly depending on the configuration of the Loop Current.

The scenarios all differ in their starting conditions, a technique used in weather and climate forecasting to determine how uncertainty about current conditions might affect predictions of the future.

Additional model studies are currently under way, looking further out in time, that will indicate what might happen to the oil in the Atlantic.

"We have been asked if and when remnants of the spill could reach the European coastlines," says Martin Visbeck, a member of the research team from IFM-GEOMAR, Kiel, Germany. "Our assumption is that the enormous lateral mixing in the ocean together with the biological disintegration of the oil should reduce the pollution to levels below harmful concentrations. But we would like to have this backed up by numbers from some of the best ocean models."

The scientists are using the Parallel Ocean Program, which is the ocean component of the Community Climate System Model, a powerful software tool developed by scientists at NCAR in collaboration with the Department of Energy. They are conducting the simulations at supercomputers based at the New Mexico Computer Applications Center and Oak Ridge National Laboratory.

The University Corporation for Atmospheric Research manages the National Center for Atmospheric Research under sponsorship by the National Science Foundation. Any opinions, findings and conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Note to reporters, editors, and producers:
The animation of the track of the oil spill is available at
http://www2.ucar.edu/news/ocean-currents-likely-to-carry-oil-spill-to-atlantic-coast

David Hosansky | Newswise Science News
Further information:
http://www.ucar.edu/news/

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>