Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ocean acidification from CO2 emissions will cause physiological impairment to jumbo squid

17.12.2008
The elevated carbon dioxide levels expected to be found in the world's oceans by 2100 will likely lead to physiological impairments of jumbo (or Humboldt) squid, according to research by two University of Rhode Island scientists.

The results of a study by Brad Seibel, URI assistant professor of biological sciences, and Rui Rosa, a former URI post-doctoral student now on the faculty at the University of Lisbon, Portugal, is reported in this week's issue of the Proceedings of the National Academy of Sciences.

The researchers subjected the squids (Dosidicus gigas) to elevated concentrations of CO2 equivalent to those likely to be found in the oceans in 100 years due to anthropogenic emissions. They found that the squid's routine oxygen consumption rate was reduced under these conditions, and their activity levels declined, presumably enough to have an effect on their feeding behavior.

Jumbo squid are an important predator in the eastern Pacific Ocean, and they are a large component of the diet of marine mammals, seabirds and fish.

According to Seibel, jumbo squid migrate between warm surface waters at night where CO2 levels are increasing and deeper waters during the daytime where oxygen levels are extremely low.

"Squids suppress their metabolism during their daytime foray into hypoxia, but they recover in well-oxygenated surface waters at night," he said. "If this low oxygen layer expands into shallower waters, the squids will be forced to retreat to even shallower depths to recover. However, warming temperatures and increasing CO2 levels may prevent this. The band of habitable depths during the night may become too narrow."

Carbon dioxide enters the ocean via passive diffusion from the atmosphere in a process called ocean acidification. This phenomenon has received considerable attention in recent years for its effects on calcifying organisms, such as corals and shelled mollusks, but the study by Seibel and Rosa is one of the first to show a direct physiological effect in a non-calcifying species.

The scientists speculate that the squids may eventually migrate to more northern climes where lower temperatures would reduce oxygen demand and relieve them from CO2 and oxygen stress. While it is possible, they say, that the squids could adjust their physiology over time to accommodate the changing environment, jumbo squids have among the highest oxygen demands of any animal on the planet and are thus fairly constrained in how they can respond.

"We believe it is the blood that is sensitive to high CO2 and low pH," Seibel said. "This sensitivity allows the squids to off-load oxygen more effectively to muscle tissues, but would prevent the squid from acquiring oxygen across the gills from seawater that is high in CO2."

While many other squid and octopus species have oxygen transport systems that are equally sensitive to pH, few have such high oxygen demand coupled with large body size and low environmental oxygen. Therefore the scientists believe that their study results should not be extrapolated to other marine animals.

Todd McLeish | EurekAlert!
Further information:
http://www.uri.edu

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>