Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Notre Dame study finds Asian carp DNA not widespread in the Great Lakes

05.04.2013
Scientists from the University of Notre Dame, The Nature Conservancy, and Central Michigan University have presented their findings of Asian carp DNA throughout the Great Lakes in a study published in the Canadian Journal of Fisheries and Aquatic Sciences.

"The good news is that we have found no evidence that Asian carp are widespread in the Great Lakes basin, despite extensive surveys in Southern Lake Michigan and parts of lakes Erie and St Clair," Christopher Jerde, the paper's lead author and a scientist at the University of Notre Dame, said. "Looking at the overall patterns of detections we remain convinced that the most likely source of Asian carp DNA is live fish."

Some recent reports regarding environmental DNA have suggested that birds, boats, and other pathways, but not live fish, are spreading the bighead and silver carp DNA.

"It's really very telling that the only places DNA has been recovered are where Asian carp have been captured," Jerde points out. "If birds or boats were commonly spreading the DNA, then we should be detecting DNA in other places we have surveyed in the Great Lakes."
According to the USGS, in 2010 commercial fishermen captured a 20 lb. bighead carp in Lake Calumet, 30 miles above the electric barrier meant to block the advancing carp from the Illinois River. Lake Calumet is 7 miles of river away from Lake Michigan. Likewise, in 1995 and twice in 2000, USGS records indicate that bighead carp were captured in the western basin of Lake Erie.

"It shouldn't be surprising that we found evidence of Asian carp in these areas where Asian carp were already known to exist from captures," Lindsay Chadderton, co-author on the paper and Director of The Nature Conservancy's Great Lakes Aquatic Invasive Species program, said.
This study builds upon a growing area of research to find invasive species when they are at low abundance and when they can be potentially managed.

"Catching these fish by net, hook, or electrofishing is ineffective when the fish are at low abundance – that's why we were asked to deploy this eDNA approach in the first place," David Lodge, director of the University of Notre Dame's Environmental Change Initiative and author on the paper, said. "If we wait for the tell-tale signs of Asian carp jumping out of the water, then we are likely too late to prevent the damages. Environmental DNA allows for us to detect their presence before the fish become widespread."

"When we first discovered DNA from Asian carp at the Calumet Harbor and Port of Chicago, we were concerned that Asian carp may already be widespread in the Great Lakes," Andrew Mahon, co-author and assistant professor at Central Michigan University, said . "But because of our collaborations with State and Federal partners, we now have a better picture of the Asian carp distribution, and we are optimistic that with continued vigilance, it will be possible to prevent Asian carp becoming established in the Great Lakes."

This work is part of a Great Lakes Restoration Initiative project funded through the US Fish and Wildlife Service to help develop a program of invasive species surveillance of the Great Lakes. This research grew out of a formal partnership between the University of Notre Dame and The Nature Conservancy, one of the world's largest and most established conservation organizations. The mission of Notre Dame's Environmental Change Initiative is to conduct innovative research that helps to solve complex environmental problems regarding invasive species, land use, and climate change, focusing on their impacts on water resources.

The Nature Conservancy is a leading conservation organization working to protect the most ecologically important lands and waters around the world for nature and people. For more information or to watch a video, visit http://nature.org/carpscience. The Notre Dame-TNC partnership is designed to develop science-based solutions to environmental problems.

The Institute for Great Lakes Research (IGLR) at Central Michigan University is committed to promoting and facilitating collaborative research and education on the Great Lakes. IGLR partners with other institutions and agencies to leverage our expertise and training and takes a multidisciplinary approach to understanding the complex environmental issues affecting the Great Lakes basin.

The Canadian Journal of Fisheries and Aquatic Sciences (CJFAS) is one of the world's top fisheries journals and is the primary publishing vehicle for the multidisciplinary field of aquatic sciences. It publishes perspectives, discussions, articles, and rapid communications, relating to current research on cells, organisms, populations, ecosystems, or processes that affect aquatic systems. The journal seeks to amplify, modify, question, or redirect accumulated knowledge in the field of fisheries and aquatic science. CJFAS is published by Canadian Science Publishing and is part of the prestigious NRC Research Press journal collection. 
(Disclaimer: 
Canadian Science Publishing (CSP) publishes the NRC Research Press journals but is not affiliated with the National Research Council of Canada (NRC). Papers published by CSP are peer-reviewed by experts in their field. The views of the authors in no way reflect the opinions of CSP or the NRC. Requests for commentary about the contents of any study should be directed to the authors.)

Christopher Jerde | EurekAlert!
Further information:
http://www.nd.edu

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>