Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Notre Dame research reveals migrating Great Lakes salmon carry contaminants upstream

07.12.2012
Be careful what you eat, says University of Notre Dame stream ecologist Gary Lamberti.

If you're catching and eating fish from a Lake Michigan tributary with a strong salmon run, the stream fish — brook trout, brown trout, panfish — may be contaminated by pollutants carried in by the salmon.

Research by Lamberti, professor and chair of biology, and his laboratory has revealed that salmon, as they travel upstream to spawn and die, carry industrial pollutants into Great Lakes streams and tributaries. The research was recently published in the journal Environmental Science and Technology.

It's a problem inadvertently created by people with good intentions, he notes.

"Most people don't realize that salmon are a non-native species in the Great Lakes," he says. "They were introduced to control alewives — another non-native fish species."

Although salmon fed on and contained the alewives — and have become important to sport fishing—there were unintended consequences. That's because of a lengthy history of industrial pollution of the Great Lakes.

"All the Great Lakes have some level of pollution," says Lamberti, "especially near cities — Chicago, Detroit, Cleveland. There are far fewer pollutants now than over the past century, but many are persistent. There are hot spots, and Lake Michigan has a lot of them — heavy metals, mercury, organic pollutants like PCBs."

PCBs (polychlorinated biphenyls) come from fluids in older electrical transformers. Also present is DDE (dichlorodiphenyldichloroethylene), a breakdown product of the banned insecticide DDT, and PBDEs (polybrominated diphenyl ethers). PBDEs, notes Lamberti, are flame retardants used in furniture, mattresses and children's clothing. "They wash out when you do the laundry."

Brook trout with salmon eggs pumped from its stomach Brook trout with salmon eggs pumped from its stomach

Even intentionally introduced species such as the Pacific salmon can result in unintended consequences for the ecosystem and the environment.

Salmon acquire pollutants through the lake food chain. When they are young, they feed on invertebrates — worms and insect larvae. As they grow larger, salmon consume more and more fish, such as alewives — which have also picked up pollutants through invertebrates they eat, which have picked up pollutants from algae and bacteria.

Salmon are a fatty fish, and these polluting chemicals are particularly "sticky," Lamberti says. "They are lipophilic — they absorb into fat tissue."

The consequence is that the salmon magnify the pollutants as they move up the food chain. "Salmon are longer lived, eat more, and the pollutants are then bio-concentrated."

The concern is that salmon are naturalized to many tributaries of the Great Lakes. "And it's a one-way street for them," Lamberti says. "They spawn, die in the stream where they spawn, and then leave their contaminant load in the stream. Stream fish eat salmon eggs, and may also eat carcass tissue as they decompose."

Fish in streams and tributaries with large salmon runs — fish that never go out into the lake, he notes — show contaminant levels very similar to that of Great Lakes salmon.

"Let's keep in mind," he adds, "there are FDA advisories for pregnant women and children on the risks of eating large Great Lakes fish, because of the danger of chemical contaminants.

"But there are no warnings for stream fish — that's the specter. If you're eating fish from a stream with a lot of salmon, you might as well be eating the salmon. I would err on the side of caution when eating any fish from a salmon river. Either that or harvest fish only upstream of where salmon spawn."

For comparison purposes, Lamberti's research analyzed the tissue of fish upstream from where salmon spawn and die.

"The upstream section of the same river was not contaminated. Below the salmon, the river had measurable levels of contaminants. There's no other way for the contaminants to get there but the salmon. Water doesn't flow uphill."

The conclusion?

Although salmon are an economic benefit to the Great Lakes and perform important ecological functions (such as controlling the population of alewives), we need to consider the impact of salmon on streams where they spawn.

"If we want to remove a dam on a river — and that will allow salmon to move upstream — we need to realize that the salmon will carry pollutants with them and disperse them into the food web," Lamberti says.

"In sensitive areas with a lot of native fish, we might want to prevent salmon from moving upstream. And in the Great Lakes, maybe we should consider restoring the native populations of lake trout and whitefish rather than encouraging more salmon."

Gary Lamberti | EurekAlert!
Further information:
http://www.nd.edu

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>