Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Notre Dame research reveals migrating Great Lakes salmon carry contaminants upstream

Be careful what you eat, says University of Notre Dame stream ecologist Gary Lamberti.

If you're catching and eating fish from a Lake Michigan tributary with a strong salmon run, the stream fish — brook trout, brown trout, panfish — may be contaminated by pollutants carried in by the salmon.

Research by Lamberti, professor and chair of biology, and his laboratory has revealed that salmon, as they travel upstream to spawn and die, carry industrial pollutants into Great Lakes streams and tributaries. The research was recently published in the journal Environmental Science and Technology.

It's a problem inadvertently created by people with good intentions, he notes.

"Most people don't realize that salmon are a non-native species in the Great Lakes," he says. "They were introduced to control alewives — another non-native fish species."

Although salmon fed on and contained the alewives — and have become important to sport fishing—there were unintended consequences. That's because of a lengthy history of industrial pollution of the Great Lakes.

"All the Great Lakes have some level of pollution," says Lamberti, "especially near cities — Chicago, Detroit, Cleveland. There are far fewer pollutants now than over the past century, but many are persistent. There are hot spots, and Lake Michigan has a lot of them — heavy metals, mercury, organic pollutants like PCBs."

PCBs (polychlorinated biphenyls) come from fluids in older electrical transformers. Also present is DDE (dichlorodiphenyldichloroethylene), a breakdown product of the banned insecticide DDT, and PBDEs (polybrominated diphenyl ethers). PBDEs, notes Lamberti, are flame retardants used in furniture, mattresses and children's clothing. "They wash out when you do the laundry."

Brook trout with salmon eggs pumped from its stomach Brook trout with salmon eggs pumped from its stomach

Even intentionally introduced species such as the Pacific salmon can result in unintended consequences for the ecosystem and the environment.

Salmon acquire pollutants through the lake food chain. When they are young, they feed on invertebrates — worms and insect larvae. As they grow larger, salmon consume more and more fish, such as alewives — which have also picked up pollutants through invertebrates they eat, which have picked up pollutants from algae and bacteria.

Salmon are a fatty fish, and these polluting chemicals are particularly "sticky," Lamberti says. "They are lipophilic — they absorb into fat tissue."

The consequence is that the salmon magnify the pollutants as they move up the food chain. "Salmon are longer lived, eat more, and the pollutants are then bio-concentrated."

The concern is that salmon are naturalized to many tributaries of the Great Lakes. "And it's a one-way street for them," Lamberti says. "They spawn, die in the stream where they spawn, and then leave their contaminant load in the stream. Stream fish eat salmon eggs, and may also eat carcass tissue as they decompose."

Fish in streams and tributaries with large salmon runs — fish that never go out into the lake, he notes — show contaminant levels very similar to that of Great Lakes salmon.

"Let's keep in mind," he adds, "there are FDA advisories for pregnant women and children on the risks of eating large Great Lakes fish, because of the danger of chemical contaminants.

"But there are no warnings for stream fish — that's the specter. If you're eating fish from a stream with a lot of salmon, you might as well be eating the salmon. I would err on the side of caution when eating any fish from a salmon river. Either that or harvest fish only upstream of where salmon spawn."

For comparison purposes, Lamberti's research analyzed the tissue of fish upstream from where salmon spawn and die.

"The upstream section of the same river was not contaminated. Below the salmon, the river had measurable levels of contaminants. There's no other way for the contaminants to get there but the salmon. Water doesn't flow uphill."

The conclusion?

Although salmon are an economic benefit to the Great Lakes and perform important ecological functions (such as controlling the population of alewives), we need to consider the impact of salmon on streams where they spawn.

"If we want to remove a dam on a river — and that will allow salmon to move upstream — we need to realize that the salmon will carry pollutants with them and disperse them into the food web," Lamberti says.

"In sensitive areas with a lot of native fish, we might want to prevent salmon from moving upstream. And in the Great Lakes, maybe we should consider restoring the native populations of lake trout and whitefish rather than encouraging more salmon."

Gary Lamberti | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>