Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Notre Dame research reveals migrating Great Lakes salmon carry contaminants upstream

07.12.2012
Be careful what you eat, says University of Notre Dame stream ecologist Gary Lamberti.

If you're catching and eating fish from a Lake Michigan tributary with a strong salmon run, the stream fish — brook trout, brown trout, panfish — may be contaminated by pollutants carried in by the salmon.

Research by Lamberti, professor and chair of biology, and his laboratory has revealed that salmon, as they travel upstream to spawn and die, carry industrial pollutants into Great Lakes streams and tributaries. The research was recently published in the journal Environmental Science and Technology.

It's a problem inadvertently created by people with good intentions, he notes.

"Most people don't realize that salmon are a non-native species in the Great Lakes," he says. "They were introduced to control alewives — another non-native fish species."

Although salmon fed on and contained the alewives — and have become important to sport fishing—there were unintended consequences. That's because of a lengthy history of industrial pollution of the Great Lakes.

"All the Great Lakes have some level of pollution," says Lamberti, "especially near cities — Chicago, Detroit, Cleveland. There are far fewer pollutants now than over the past century, but many are persistent. There are hot spots, and Lake Michigan has a lot of them — heavy metals, mercury, organic pollutants like PCBs."

PCBs (polychlorinated biphenyls) come from fluids in older electrical transformers. Also present is DDE (dichlorodiphenyldichloroethylene), a breakdown product of the banned insecticide DDT, and PBDEs (polybrominated diphenyl ethers). PBDEs, notes Lamberti, are flame retardants used in furniture, mattresses and children's clothing. "They wash out when you do the laundry."

Brook trout with salmon eggs pumped from its stomach Brook trout with salmon eggs pumped from its stomach

Even intentionally introduced species such as the Pacific salmon can result in unintended consequences for the ecosystem and the environment.

Salmon acquire pollutants through the lake food chain. When they are young, they feed on invertebrates — worms and insect larvae. As they grow larger, salmon consume more and more fish, such as alewives — which have also picked up pollutants through invertebrates they eat, which have picked up pollutants from algae and bacteria.

Salmon are a fatty fish, and these polluting chemicals are particularly "sticky," Lamberti says. "They are lipophilic — they absorb into fat tissue."

The consequence is that the salmon magnify the pollutants as they move up the food chain. "Salmon are longer lived, eat more, and the pollutants are then bio-concentrated."

The concern is that salmon are naturalized to many tributaries of the Great Lakes. "And it's a one-way street for them," Lamberti says. "They spawn, die in the stream where they spawn, and then leave their contaminant load in the stream. Stream fish eat salmon eggs, and may also eat carcass tissue as they decompose."

Fish in streams and tributaries with large salmon runs — fish that never go out into the lake, he notes — show contaminant levels very similar to that of Great Lakes salmon.

"Let's keep in mind," he adds, "there are FDA advisories for pregnant women and children on the risks of eating large Great Lakes fish, because of the danger of chemical contaminants.

"But there are no warnings for stream fish — that's the specter. If you're eating fish from a stream with a lot of salmon, you might as well be eating the salmon. I would err on the side of caution when eating any fish from a salmon river. Either that or harvest fish only upstream of where salmon spawn."

For comparison purposes, Lamberti's research analyzed the tissue of fish upstream from where salmon spawn and die.

"The upstream section of the same river was not contaminated. Below the salmon, the river had measurable levels of contaminants. There's no other way for the contaminants to get there but the salmon. Water doesn't flow uphill."

The conclusion?

Although salmon are an economic benefit to the Great Lakes and perform important ecological functions (such as controlling the population of alewives), we need to consider the impact of salmon on streams where they spawn.

"If we want to remove a dam on a river — and that will allow salmon to move upstream — we need to realize that the salmon will carry pollutants with them and disperse them into the food web," Lamberti says.

"In sensitive areas with a lot of native fish, we might want to prevent salmon from moving upstream. And in the Great Lakes, maybe we should consider restoring the native populations of lake trout and whitefish rather than encouraging more salmon."

Gary Lamberti | EurekAlert!
Further information:
http://www.nd.edu

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>