Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NOAA-sponsored scientists first to map offshore San Andreas Fault and associated ecosystems

01.10.2010
For the first time, scientists are using advanced technology and an innovative vessel to study, image, and map the unexplored offshore Northern San Andreas Fault from north of San Francisco to its termination at the junction of three tectonic plates off Mendocino, Calif.

The team includes scientists from NOAA's National Marine Fisheries Service, Oregon State University, the California Seafloor Mapping Program, the U.S. Geological Survey and Woods Hole Oceanographic Institution. The expedition which concludes Sunday is sponsored by NOAA's Office of Ocean Exploration and Research.

While the fault on land is obscured by erosion, vegetation and urbanization in many places, scientists expect the subsea portion of the fault to include deep rifts and high walls, along with areas supporting animal life. The expedition team is using high-resolution sonar mapping, subsurface seismic data and imaging with digital cameras for the first-ever three-dimensional bathymetric-structural map that will model the undersea Northern San Andreas Fault and its structure. Little is known about the offshore fault due to perennial bad weather that has limited scientific investigations.

"By relating this 3-D model with ongoing studies of the ancient record of seismic activity in this volatile area, scientists may better understand past earthquakes — in part because fault exposure on land is poor, and the sedimentary record of the northern California offshore fault indicates a rich history of past earthquakes," said Chris Goldfinger, co-principal investigator and marine geologist and geophysicist at Oregon State University in Corvallis, Ore. "The model will also benefit geodetic studies of the buildup of energy to help better understand the potential for earthquakes."

More than a century after the 1906 Great San Francisco Earthquake, the science team is also exploring the fault for lessons associated with the intertwined relationships between major earthquakes and biological diversity. Evidence shows that active fluid and gas venting along fast-moving tectonic systems, such as the San Andreas Fault, create and recreate productive, unique and unexplored ecosystems.

"This is a tectonically and chemically active area," said Waldo Wakefield, co-principal investigator and a research fisheries biologist at NOAA's Northwest Fisheries Science Center in Newport, Ore. "I am looking for abrupt topographic features as well as vents or seeps that support chemosynthetic life — life that extracts its energy needs from dissolved gasses in the water. I'm also looking at sonar maps of the water column and images of the seafloor for communities of life."

A variety of sensors and systems are being used to help locate marine life including a NOAA autonomous underwater vehicle (AUV) named 'Lucille.' Elizabeth Clarke, a NOAA fisheries scientist, is coordinating Lucille's operations and obtaining photographic information about fauna associated with the fault. The AUV and its sensors can dive to nearly one mile (1,500 meters), but depths associated with this expedition will range between approximately 230 to 1100 feet (70 to 350 meters).

Early in the expedition, scientists collected bathymetric and subsurface seismic reflection data to guide them to specific areas of interest for follow-on and more detailed operations. The AUV's high-definition cameras are obtaining multiple images to be stitched into "photo mosaics" showing detailed fault structure and animal life.

The first part of the expedition is operating from Research Vessel Derek M. Baylis, a "green" research vessel primarily powered by sail and owned by Sealife Conservation, a nonprofit organization. The expedition will track the carbon footprint of the 65-foot energy efficient Baylis and compare results to conventional vessels.

AUV operations are being conducted aboard the Research Vessel Pacific Storm, operated by Oregon State University's Marine Mammal Institute. The ship and AUV team joined the expedition offshore of Fort Bragg on Sept. 25.

As the expedition progresses, NOAA's Ocean Explorer website features maps and images of the fault and associated ecosystems, logs from scientists at sea, and lesson plans that align with National Science Education Standards at three grade levels.

NOAA's Office of Exploration and Research uses state-of-the-art technologies to explore the Earth's largely unknown ocean in all its dimensions for the purpose of discovery and the advancement of knowledge.

NOAA's mission is to understand and predict changes in the Earth's environment, from the depths of the ocean to the surface of the sun, and to conserve and manage our coastal and marine resources. Visit us on online or at Facebook.

On the Web:

NOAA's Office of Ocean Exploration and Research:
http://oceanexplorer.noaa.gov
Sealife Conservation:
http://sealifeconservation.org/baylis.html
Oregon State University's Marine Mammal Institute:
http://mmi.oregonstate.edu/research-vessels
California Seafloor Mapping Program:
http://walrus.wr.usgs.gov/mapping/csmp/

Fred Gorell | EurekAlert!
Further information:
http://www.noaa.gov

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>