Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nitrogen Mysteries in Urban Grasslands

15.10.2009
Areas of turf-forming species created and maintained by humans for aesthetic and recreational (not grazing) purposes, i.e. “urban grasslands” are an extremely common, but poorly studied ecosystem type.

There are over 150,000 km2 of urban grasslands in the U.S. and many receive high rates of fertilizer, creating concerns about nutrient runoff to streams, lakes, and estuaries and emissions of greenhouse gases such as nitrous oxide (N2O) to the atmosphere.

Most turfgrass research has been done on highly controlled research plots which can be very different than actual urban grasslands which have highly variable management regimes and physical, biological, and chemical conditions.

In the Baltimore Ecosystem Study (BES, http://beslter.org), one of two urban components of the U.S. National Science Foundation (NSF) Long Term Ecological Research (LTER) network, scientists from the Cary Institute of Ecosystem Studies (Peter Groffman), the U.S. Forest Service (Richard Pouyat, Ian Yesilonis) and the University of North Carolina (Lawrence Band) established a series of long-term study plots to evaluate multiple ecological variables in different components of the urban landscape.

An NSF-funded Research Experience for Undergraduates student (Candiss Williams) used these plots for a summer research project. Forest plots were established in urban and rural parks for comparison with grass plots that vary in management intensity, ranging from unfertilized and infrequently mowed to high levels of fertilizer and herbicide input and frequent mowing. Plots were instrumented with lysimeters to measure nutrient leaching losses, soil chamber bases for measuring soil/atmosphere fluxes of N2O, and sensors for soil temperature and moisture. Results on nitrate (NO3-) leaching and N2O fluxes over a period of significant climatic variability (2001–2005) were presented in a paper in the September–October 2009 issue of Journal of Environmental Quality.

Differences in NO3- leaching and N2O flux between forests and grasslands were not as high as expected given the higher frequency of disturbance and fertilization in the grasslands. Annual NO3- leaching was usually higher in grass than forest plots, but in a very dry year and when a disturbed forest plot was included in the analysis, differences were small and insignificant. There were few differences in N2O between grass and forest plots, and markedly higher fluxes in wet years. In a dry year, N losses from the grasslands were equal to less than 10% of the amount of N applied in fertilizer, and even in a wet year, losses were less than 40%. Lots of N appears to be retained in urban grasslands, likely because they support rapidly growing vegetation and high stocks of soil organic matter.

While surprising, these results do not suggest that we should not be concerned about the environmental impacts of urban grasslands. If leaching losses equal 40% of the amount of N applied in fertilizer, and high rates of fertilizer (e.g., 200 kg N ha-1 yr-1) are applied, lawns will have a strongly negative effect on receiving water quality. However, our results suggest that urban grasslands have considerable capacity for N retention that should be studied and considered in evaluations of land-use change and in the development of management plans for urban and suburban watersheds.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at http://jeq.scijournals.org/cgi/content/abstract/38/5/1848.

The Journal of Environmental Quality, http://jeq.scijournals.org is a peer-reviewed, international journal of environmental quality in natural and agricultural ecosystems published six times a year by the American Society of Agronomy (ASA), Crop Science Society of America (CSSA), and the Soil Science Society of America (SSSA). The Journal of Environmental Quality covers various aspects of anthropogenic impacts on the environment, including terrestrial, atmospheric, and aquatic systems.

The American Society of Agronomy (ASA) www.agronomy.org, is a scientific society helping its 8,000+ members advance the disciplines and practices of agronomy by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

Sara Uttech | Newswise Science News
Further information:
http://jeq.scijournals.org/cgi/content/abstract/38/5/1848
http://www.agronomy.org

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>