Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nitrogen losses off the Coast of Oman

02.08.2011
Intensive Nitrogen losses off the coast of Oman
Caused by Coupling of two microbial processes

Nitrogen is an essential nutrient and often a limiting factor for all life on our planet. It is present in proteins and DNA. In the oceans, microbial processes regulate the concentrations and fluxes of biological relevant nitrogen compounds like ammonia, nitrite and nitrate, which have to be available for the marine life. The major sink through which nitrogen can escape from the marine food web into the atmosphere is as nitrogen gas, N2. The driving forces balancing this system are more complex than previously thought.


The Arabian Sea is part of the Indian Ocean and is bordered by India, Pakistan, Oman and Somalia.
Manfred Schloesser, Max Planck Institute for Marine Microbiology


N-losses as a result of the coupling of two reaction pathways. In the Arabian Sea off the coast of Oman, DNRA (blue) provides ammonia for the anammox reaction (yellow), thus producing nitrogen gas N2that can escape from the water column. Nitrate reduction and nitrification also take place and act as sources of nitrite, and also of ammonia by the former reaction. Meanwhile, there is little evidence for denitrification activity (red dashes).
modified from Lam et al., PNAS, 106:4752-4757).

Now scientists from the Max Planck Institute for Marine Microbiology and their colleagues have taken a very close look at the microbial processes in the Arabian Sea and published their results in two scientific papers.

The marine food web stores huge amounts of organic carbon compounds. The carbon cycle is interacting with both the dissolved molecular oxygen (O2) and the nitrogen cycle. Global warming results in a diminished solubility of oxygen, and the influx of waste-water loaded with organic compounds from the human civilization further consumes oxygen. Consequently, the oxygen-deficient waters or oxygen minimum zones (OMZ), which originally constituted only
The Arabian Sea harbors one of the three largest OMZs in the world and about 10-20 % of all global marine N-losses is thought to happen there. Thus far, it has been regarded as a fact that a bacterial process called denitrification was the major pathway resulting in N-losses from the Arabian Sea, via the stepwise reduction of nitrate to nitrite, then to nitric oxide, nitrous oxide and eventually gaseous nitrogen N2. Earlier studies from other authors claimed low oxygen and simultaneously high nitrite concentrations to be an indicator for denitrification and subsequent N-losses, but actual activity measurements have been rare. To solve this puzzle, researchers from the Max Planck Institute for Marine Microbiology including Phyllis Lam, Marlene Jensen and Marcel Kuypers, teamed up with scientists from Kiel, Oldenburg, Hamburg, Aarhus (Denmark), Nijmegen, (the Netherlands) and Princeton (USA), to trace the individual reaction steps in the nitrogen cycle by following the fate of compounds labeled with the stable isotope of 15N. Additionally, they identified the responsible microorganisms and active expression of the corresponding biomarker genes.

Their findings were surprising. The central-northeastern area of the Arabian Sea, which was thought to be the stronghold, was proven to be almost inactive in N-losses during their visit. The scientists now explain the high nitrite concentrations found there by a slow nitrate reduction and little oxidation of ammonia. Both reactions can run under low oxygen conditions and form nitrite as a final product. Satellite data from the past 10 years show that surface phytoplankton production in this region is not particularly high on average. Due to such likely missing organic matter, nitrite cannot be reduced further. Together with the sluggish water circulation, nitrite therefore accumulates in this region of the Arabian Sea.

On the contrary, in the northwestern part off the coast of Oman, which was previously assumed to be irrelevant regarding nitrogen balances, the researchers detected very high N-loss activity. As shown in their publications, two coupled reactions in the nitrogen cycle can do the trick: the anammox reaction (anaerobic oxidation of ammonia) and the dissimilatory nitrate reduction to ammonia (DNRA). Like in a detective story, the scientists found the telltale evidence of 15N-labeled compounds, as double-15N-labeled N2 was formed from labeled nitrite through a combination of anammox and DNRA. DNRA provides the important ammonia for the anammox reaction, which needs both ammonia and nitrite to form gaseous N2. Further proof came from gene expression studies showing which microbial genes were actively engaged in the pathways. This DNRA-anammox coupling, in addition to some anammox alone, explains the high N-loss in these waters.

Dr. Marcel Kuypers, Max Planck director, says: “Our findings fit very well with our previous results from other OMZs like the upwelling regions off the coasts of Peru, Chile and Namibia, where we also found anammox to be the most important N-loss pathway. The high nitrite concentrations in the central-northeastern Arabian Sea are presumably the last traces of earlier events which are now leveling off.”

Dr. Phyllis Lam from the Max Planck Institute adds: “In the future, the Arabian Sea should remain in our research focus, as reactions therein have strong impacts on the global nitrogen balance. It is unlikely that active nitrogen cycling remains the same throughout the year with respect to the seasonal monsoons, and it will continue to alter with the increasing amounts of nitrogen inputs from the atmosphere and land due to human activities. Unfortunately, pirate activities will not allow further research expeditions in the area any time soon.”

Manfred Schloesser

Further information
Dr. Phyllis Lam
Max Planck Institute for Marine Microbiology
Phone +49 (0)421 2028 644; plammpi-bremen.de
Dr. Marcel Kuypers
Max Planck Institute for Marine Microbiology
Phone +49 (0)421 2028 602; mkuypersmpi-bremen.de
Dr. Marlene Mark Jensen
Technical University of Denmark
Phone +45 45251437; mmajenv.dtu.dk
Press officer
Dr. Manfred Schloesser, phone +49 (0)421 2028 704;
mschloesmpi-bremen.de
1. Original article
Origin and fate of the secondary nitrite maximum in the Arabian Sea. P. Lam, M. M. Jensen , A. Kock , K. A. Lettmann, Y. Plancherel, G. Lavik, H. W. Bange , and M. M. M. Kuypers. Biogeosciences, 8, 1565–1577, 2011

doi:10.5194/bg-8-1565-2011

Institutions
Max Planck Institute for Marine Microbiology, Bremen, Germany
IFM-GEOMAR, Kiel, Germany
Institut für Chemie und Biologie des Meeres, Universität Oldenburg, Germany
Department of Geosciences, Princeton University, USA
2. Original article
Intensive nitrogen loss over the Omani Shelf due to anammox coupled with dissimilatory nitrite reduction to ammonium. Marlene M Jensen, Phyllis Lam, Niels Peter Revsbech, Birgit Nagel, Birgit Gaye, Mike SM Jetten and Marcel MM Kuypers. The ISME Journal (2011) 1-11. doi:10.1038/ismej.2011.44

Institutions

Max Planck Institute for Marine Microbiology, Bremen, Germany
Institute of Biological Sciences, University of Aarhus, Aarhus, Denmark
Institute of Coastal Research, GKSS Research Center, Geesthacht, Germany
Institute of Biogeochemistry and Marine Chemistry, University of Hamburg, Germany

Department of Microbiology, IWWR, Radbound University Nijmegen, The Netherlands

Dr. Manfred Schloesser | Max-Planck-Institut
Further information:
http://www.mpi-bremen.de/

More articles from Ecology, The Environment and Conservation:

nachricht Scientists team up on study to save endangered African penguins
16.11.2017 | Florida Atlantic University

nachricht Climate change: Urban trees are growing faster worldwide
13.11.2017 | Technische Universität München

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>