Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nitrogen losses off the Coast of Oman

02.08.2011
Intensive Nitrogen losses off the coast of Oman
Caused by Coupling of two microbial processes

Nitrogen is an essential nutrient and often a limiting factor for all life on our planet. It is present in proteins and DNA. In the oceans, microbial processes regulate the concentrations and fluxes of biological relevant nitrogen compounds like ammonia, nitrite and nitrate, which have to be available for the marine life. The major sink through which nitrogen can escape from the marine food web into the atmosphere is as nitrogen gas, N2. The driving forces balancing this system are more complex than previously thought.


The Arabian Sea is part of the Indian Ocean and is bordered by India, Pakistan, Oman and Somalia.
Manfred Schloesser, Max Planck Institute for Marine Microbiology


N-losses as a result of the coupling of two reaction pathways. In the Arabian Sea off the coast of Oman, DNRA (blue) provides ammonia for the anammox reaction (yellow), thus producing nitrogen gas N2that can escape from the water column. Nitrate reduction and nitrification also take place and act as sources of nitrite, and also of ammonia by the former reaction. Meanwhile, there is little evidence for denitrification activity (red dashes).
modified from Lam et al., PNAS, 106:4752-4757).

Now scientists from the Max Planck Institute for Marine Microbiology and their colleagues have taken a very close look at the microbial processes in the Arabian Sea and published their results in two scientific papers.

The marine food web stores huge amounts of organic carbon compounds. The carbon cycle is interacting with both the dissolved molecular oxygen (O2) and the nitrogen cycle. Global warming results in a diminished solubility of oxygen, and the influx of waste-water loaded with organic compounds from the human civilization further consumes oxygen. Consequently, the oxygen-deficient waters or oxygen minimum zones (OMZ), which originally constituted only
The Arabian Sea harbors one of the three largest OMZs in the world and about 10-20 % of all global marine N-losses is thought to happen there. Thus far, it has been regarded as a fact that a bacterial process called denitrification was the major pathway resulting in N-losses from the Arabian Sea, via the stepwise reduction of nitrate to nitrite, then to nitric oxide, nitrous oxide and eventually gaseous nitrogen N2. Earlier studies from other authors claimed low oxygen and simultaneously high nitrite concentrations to be an indicator for denitrification and subsequent N-losses, but actual activity measurements have been rare. To solve this puzzle, researchers from the Max Planck Institute for Marine Microbiology including Phyllis Lam, Marlene Jensen and Marcel Kuypers, teamed up with scientists from Kiel, Oldenburg, Hamburg, Aarhus (Denmark), Nijmegen, (the Netherlands) and Princeton (USA), to trace the individual reaction steps in the nitrogen cycle by following the fate of compounds labeled with the stable isotope of 15N. Additionally, they identified the responsible microorganisms and active expression of the corresponding biomarker genes.

Their findings were surprising. The central-northeastern area of the Arabian Sea, which was thought to be the stronghold, was proven to be almost inactive in N-losses during their visit. The scientists now explain the high nitrite concentrations found there by a slow nitrate reduction and little oxidation of ammonia. Both reactions can run under low oxygen conditions and form nitrite as a final product. Satellite data from the past 10 years show that surface phytoplankton production in this region is not particularly high on average. Due to such likely missing organic matter, nitrite cannot be reduced further. Together with the sluggish water circulation, nitrite therefore accumulates in this region of the Arabian Sea.

On the contrary, in the northwestern part off the coast of Oman, which was previously assumed to be irrelevant regarding nitrogen balances, the researchers detected very high N-loss activity. As shown in their publications, two coupled reactions in the nitrogen cycle can do the trick: the anammox reaction (anaerobic oxidation of ammonia) and the dissimilatory nitrate reduction to ammonia (DNRA). Like in a detective story, the scientists found the telltale evidence of 15N-labeled compounds, as double-15N-labeled N2 was formed from labeled nitrite through a combination of anammox and DNRA. DNRA provides the important ammonia for the anammox reaction, which needs both ammonia and nitrite to form gaseous N2. Further proof came from gene expression studies showing which microbial genes were actively engaged in the pathways. This DNRA-anammox coupling, in addition to some anammox alone, explains the high N-loss in these waters.

Dr. Marcel Kuypers, Max Planck director, says: “Our findings fit very well with our previous results from other OMZs like the upwelling regions off the coasts of Peru, Chile and Namibia, where we also found anammox to be the most important N-loss pathway. The high nitrite concentrations in the central-northeastern Arabian Sea are presumably the last traces of earlier events which are now leveling off.”

Dr. Phyllis Lam from the Max Planck Institute adds: “In the future, the Arabian Sea should remain in our research focus, as reactions therein have strong impacts on the global nitrogen balance. It is unlikely that active nitrogen cycling remains the same throughout the year with respect to the seasonal monsoons, and it will continue to alter with the increasing amounts of nitrogen inputs from the atmosphere and land due to human activities. Unfortunately, pirate activities will not allow further research expeditions in the area any time soon.”

Manfred Schloesser

Further information
Dr. Phyllis Lam
Max Planck Institute for Marine Microbiology
Phone +49 (0)421 2028 644; plammpi-bremen.de
Dr. Marcel Kuypers
Max Planck Institute for Marine Microbiology
Phone +49 (0)421 2028 602; mkuypersmpi-bremen.de
Dr. Marlene Mark Jensen
Technical University of Denmark
Phone +45 45251437; mmajenv.dtu.dk
Press officer
Dr. Manfred Schloesser, phone +49 (0)421 2028 704;
mschloesmpi-bremen.de
1. Original article
Origin and fate of the secondary nitrite maximum in the Arabian Sea. P. Lam, M. M. Jensen , A. Kock , K. A. Lettmann, Y. Plancherel, G. Lavik, H. W. Bange , and M. M. M. Kuypers. Biogeosciences, 8, 1565–1577, 2011

doi:10.5194/bg-8-1565-2011

Institutions
Max Planck Institute for Marine Microbiology, Bremen, Germany
IFM-GEOMAR, Kiel, Germany
Institut für Chemie und Biologie des Meeres, Universität Oldenburg, Germany
Department of Geosciences, Princeton University, USA
2. Original article
Intensive nitrogen loss over the Omani Shelf due to anammox coupled with dissimilatory nitrite reduction to ammonium. Marlene M Jensen, Phyllis Lam, Niels Peter Revsbech, Birgit Nagel, Birgit Gaye, Mike SM Jetten and Marcel MM Kuypers. The ISME Journal (2011) 1-11. doi:10.1038/ismej.2011.44

Institutions

Max Planck Institute for Marine Microbiology, Bremen, Germany
Institute of Biological Sciences, University of Aarhus, Aarhus, Denmark
Institute of Coastal Research, GKSS Research Center, Geesthacht, Germany
Institute of Biogeochemistry and Marine Chemistry, University of Hamburg, Germany

Department of Microbiology, IWWR, Radbound University Nijmegen, The Netherlands

Dr. Manfred Schloesser | Max-Planck-Institut
Further information:
http://www.mpi-bremen.de/

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>