Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nitrogen losses off the Coast of Oman

02.08.2011
Intensive Nitrogen losses off the coast of Oman
Caused by Coupling of two microbial processes

Nitrogen is an essential nutrient and often a limiting factor for all life on our planet. It is present in proteins and DNA. In the oceans, microbial processes regulate the concentrations and fluxes of biological relevant nitrogen compounds like ammonia, nitrite and nitrate, which have to be available for the marine life. The major sink through which nitrogen can escape from the marine food web into the atmosphere is as nitrogen gas, N2. The driving forces balancing this system are more complex than previously thought.


The Arabian Sea is part of the Indian Ocean and is bordered by India, Pakistan, Oman and Somalia.
Manfred Schloesser, Max Planck Institute for Marine Microbiology


N-losses as a result of the coupling of two reaction pathways. In the Arabian Sea off the coast of Oman, DNRA (blue) provides ammonia for the anammox reaction (yellow), thus producing nitrogen gas N2that can escape from the water column. Nitrate reduction and nitrification also take place and act as sources of nitrite, and also of ammonia by the former reaction. Meanwhile, there is little evidence for denitrification activity (red dashes).
modified from Lam et al., PNAS, 106:4752-4757).

Now scientists from the Max Planck Institute for Marine Microbiology and their colleagues have taken a very close look at the microbial processes in the Arabian Sea and published their results in two scientific papers.

The marine food web stores huge amounts of organic carbon compounds. The carbon cycle is interacting with both the dissolved molecular oxygen (O2) and the nitrogen cycle. Global warming results in a diminished solubility of oxygen, and the influx of waste-water loaded with organic compounds from the human civilization further consumes oxygen. Consequently, the oxygen-deficient waters or oxygen minimum zones (OMZ), which originally constituted only
The Arabian Sea harbors one of the three largest OMZs in the world and about 10-20 % of all global marine N-losses is thought to happen there. Thus far, it has been regarded as a fact that a bacterial process called denitrification was the major pathway resulting in N-losses from the Arabian Sea, via the stepwise reduction of nitrate to nitrite, then to nitric oxide, nitrous oxide and eventually gaseous nitrogen N2. Earlier studies from other authors claimed low oxygen and simultaneously high nitrite concentrations to be an indicator for denitrification and subsequent N-losses, but actual activity measurements have been rare. To solve this puzzle, researchers from the Max Planck Institute for Marine Microbiology including Phyllis Lam, Marlene Jensen and Marcel Kuypers, teamed up with scientists from Kiel, Oldenburg, Hamburg, Aarhus (Denmark), Nijmegen, (the Netherlands) and Princeton (USA), to trace the individual reaction steps in the nitrogen cycle by following the fate of compounds labeled with the stable isotope of 15N. Additionally, they identified the responsible microorganisms and active expression of the corresponding biomarker genes.

Their findings were surprising. The central-northeastern area of the Arabian Sea, which was thought to be the stronghold, was proven to be almost inactive in N-losses during their visit. The scientists now explain the high nitrite concentrations found there by a slow nitrate reduction and little oxidation of ammonia. Both reactions can run under low oxygen conditions and form nitrite as a final product. Satellite data from the past 10 years show that surface phytoplankton production in this region is not particularly high on average. Due to such likely missing organic matter, nitrite cannot be reduced further. Together with the sluggish water circulation, nitrite therefore accumulates in this region of the Arabian Sea.

On the contrary, in the northwestern part off the coast of Oman, which was previously assumed to be irrelevant regarding nitrogen balances, the researchers detected very high N-loss activity. As shown in their publications, two coupled reactions in the nitrogen cycle can do the trick: the anammox reaction (anaerobic oxidation of ammonia) and the dissimilatory nitrate reduction to ammonia (DNRA). Like in a detective story, the scientists found the telltale evidence of 15N-labeled compounds, as double-15N-labeled N2 was formed from labeled nitrite through a combination of anammox and DNRA. DNRA provides the important ammonia for the anammox reaction, which needs both ammonia and nitrite to form gaseous N2. Further proof came from gene expression studies showing which microbial genes were actively engaged in the pathways. This DNRA-anammox coupling, in addition to some anammox alone, explains the high N-loss in these waters.

Dr. Marcel Kuypers, Max Planck director, says: “Our findings fit very well with our previous results from other OMZs like the upwelling regions off the coasts of Peru, Chile and Namibia, where we also found anammox to be the most important N-loss pathway. The high nitrite concentrations in the central-northeastern Arabian Sea are presumably the last traces of earlier events which are now leveling off.”

Dr. Phyllis Lam from the Max Planck Institute adds: “In the future, the Arabian Sea should remain in our research focus, as reactions therein have strong impacts on the global nitrogen balance. It is unlikely that active nitrogen cycling remains the same throughout the year with respect to the seasonal monsoons, and it will continue to alter with the increasing amounts of nitrogen inputs from the atmosphere and land due to human activities. Unfortunately, pirate activities will not allow further research expeditions in the area any time soon.”

Manfred Schloesser

Further information
Dr. Phyllis Lam
Max Planck Institute for Marine Microbiology
Phone +49 (0)421 2028 644; plammpi-bremen.de
Dr. Marcel Kuypers
Max Planck Institute for Marine Microbiology
Phone +49 (0)421 2028 602; mkuypersmpi-bremen.de
Dr. Marlene Mark Jensen
Technical University of Denmark
Phone +45 45251437; mmajenv.dtu.dk
Press officer
Dr. Manfred Schloesser, phone +49 (0)421 2028 704;
mschloesmpi-bremen.de
1. Original article
Origin and fate of the secondary nitrite maximum in the Arabian Sea. P. Lam, M. M. Jensen , A. Kock , K. A. Lettmann, Y. Plancherel, G. Lavik, H. W. Bange , and M. M. M. Kuypers. Biogeosciences, 8, 1565–1577, 2011

doi:10.5194/bg-8-1565-2011

Institutions
Max Planck Institute for Marine Microbiology, Bremen, Germany
IFM-GEOMAR, Kiel, Germany
Institut für Chemie und Biologie des Meeres, Universität Oldenburg, Germany
Department of Geosciences, Princeton University, USA
2. Original article
Intensive nitrogen loss over the Omani Shelf due to anammox coupled with dissimilatory nitrite reduction to ammonium. Marlene M Jensen, Phyllis Lam, Niels Peter Revsbech, Birgit Nagel, Birgit Gaye, Mike SM Jetten and Marcel MM Kuypers. The ISME Journal (2011) 1-11. doi:10.1038/ismej.2011.44

Institutions

Max Planck Institute for Marine Microbiology, Bremen, Germany
Institute of Biological Sciences, University of Aarhus, Aarhus, Denmark
Institute of Coastal Research, GKSS Research Center, Geesthacht, Germany
Institute of Biogeochemistry and Marine Chemistry, University of Hamburg, Germany

Department of Microbiology, IWWR, Radbound University Nijmegen, The Netherlands

Dr. Manfred Schloesser | Max-Planck-Institut
Further information:
http://www.mpi-bremen.de/

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>