Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mountaintop Mining Pollution Has Distinct Isotopic Fingerprint

16.08.2013
Three elements commonly found at elevated levels in an Appalachian river polluted by runoff from mountaintop coal mining have distinctive chemistries that can be traced back to their source, according to a Duke University-led study.

The distinctive chemistries of sulfur, carbon and strontium provide scientists with new, more accurate ways to track pollution from mountaintop mining sites and to distinguish it from contamination from other sources.

"Essentially, we found that these elements have unique isotopic fingerprints, meaning we can use them as diagnostic tools to quantify mountaintop mining's relative contribution to contamination in a watershed," said Avner Vengosh, professor of geochemistry and water quality at Duke's Nicholas School of the Environment.

The newly identified tracers will be especially useful in watersheds with more than one source of potential contamination, he said. "Because they allow us to distinguish if contaminants are coming from natural sources, fracking and shale gas development, coal mining, coal ash disposal, or other causes."

Vengosh and his team's findings were published today in the online edition of the peer-reviewed journal Environmental Science & Technology.

The researchers measured the chemical and isotopic compositions of water samples collected monthly from 23 locations along West Virginia's Upper Mud River and its tributaries between May and December 2012.

They found that the isotopic signatures of sulfur (in sulfate), carbon (in dissolved inorganic carbon) and strontium from water samples collected from tributaries adjacent to mountaintop mining sites are distinguishable from those collected from unaffected upstream waters. They also found that the strontium isotope ratio is a sensitive tracer for selenium contamination, one of the major pollutants of mountaintop mining.

In mountaintop mining, companies use explosives and heavy machinery to clear away surface rocks and extract shallow deposits of high-quality coal. The companies typically dispose of the waste rock in adjacent valleys, where they bury existing headwater streams.

Previous studies by the Duke team and others have shown that runoff from these "valley fills" contains elevated levels of salts and selenium, a known fish toxin. The contamination can persist and accumulate in downstream waters for decades after active mining stops and the fills are reclaimed.

By conducting tests that simulated the natural leaching of contaminants from local rocks, Vengosh and his team were able to characterize the chemistry of the different geological formations that end up as waste rock in these fills. They found significant differences in strontium isotope ratios and selenium concentrations in streams flowing from reclaimed valley fills versus those flowing from active fills.

"This helps us further pinpoint the source of contamination by linking it directly to the type of rocks in the valley fills," Vengosh said.

The Upper Mud River flows through sparsely populated areas of southern West Virginia as a headwater stream. For about 10 kilometers, the river passes through the Hobet 21 surface mining complex, which has been active since the 1970s and is among the largest in the Appalachian coalfields.

Vengosh's co-authors were Ty Lindberg, Brittany Merola, Nathaniel Warner, Alissa White, Gary Dwyer and Richard Di Giulio, all of Duke's Nicholas School, and Laura Ruhl of the University of Arkansas at Little Rock. Ruhl received her Ph.D. from Duke in 2012.

Funding for the study came entirely from the Nicholas School of the Environment.

"The Isotopic Imprints of Mountaintop Mining Contaminants," Avner Vengosh, T. Ty Lindberg, Brittany R. Merola, Laura Ruhl, Nathaniel R. Warner, Alissa White, Gary S. Dwyer and Richard T. Di Giulio. Environmental Science & Technology, August 15, 2013 DOI: 10.1021/es4012959

Tim Lucas | EurekAlert!
Further information:
http://www.duke.edu

More articles from Ecology, The Environment and Conservation:

nachricht Listening in: Acoustic monitoring devices detect illegal hunting and logging
14.12.2017 | Gesellschaft für Ökologie e.V.

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>