Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mixed water portfolio helps thirsty cities

19.01.2010
Computer simulations for drought-prone areas reveal that when urban water planners combine three approaches of buying water -- permanent rights, options and leases -- the city avoids surplus water and high costs, and reduces shortages, according to civil engineers.

"Just like with stock portfolios, if you buy diverse stocks, you diversify your risk," said Patrick Reed, associate professor of civil engineering, Penn State. "Right now, cities don't necessarily diversify their risk through the ways in which they buy water."

Reed and his colleagues are trying to understand the benefits and trade-offs associated with buying water using a mix of market instruments in the Lower Rio Grande Valley of southern Texas. Those models incorporated the various purchasing options, along with variables such as cost, amount of surplus water and the probability of water shortages.

The researchers found that when cities in the region rely solely on permanent rights, they could incur high costs -- $13 million a year -- and require lots of surplus water yet still face significant supply failures in drought years. Alternatively, a careful mix of permanent rights, options and leases can dramatically lower costs -- $10 million a year -- increase water available to the environment and avoid supply failures during droughts.

A major focus of the research is to provide decision-makers with water planning models that graphically illustrate how options, leases and permanent rights affect cost, surplus water and probability of water shortages.

"This work not only demonstrates how we can combine multiple objectives to solve a problem, but also visualize the problem and learn from it," said Reed. "It is an innovative hybrid between engineering and policy to create highly adaptive and resilient water supply systems."

Most cities that buy water rely on permanent rights to ensure reliable water supply. It is like buying a percent of the water flowing into a reservoir.

"But you do not know what the inflows are going to be so you are essentially buying a percent of a question mark," Reed adds.

Often the city ends up buying a lot of water to cover potential shortages, resulting in extra cost and surplus water that is not available for other uses. If a city fears there will be shortages, it can purchase a monthly lease to cover the shortfall. But because demand is already high by then, the city pays a high price for the water.

The other choice for urban planners is to use options, which let them buy water at lower prices at a later date.

"It takes the volatility out of pricing and they (planners) can buy a volume of water at the original price later in summer when demand is high," said Reed.

The researchers reported their findings in a recent issue of Water Resources Research. Reed says the team's findings are especially relevant in the face of growing population and climate change.

The team tested its model against the worst drought on record in the Lower Rio Grande Valley. It found that the city made significant savings and averted water shortages when it used a diverse set of market instruments to buy water.

"We were able to find a solution that does not have any critical water shortages, without having surplus water or substantive costs," Reed explained.

Researchers say the simulations present utility companies with a variety of solutions for efficient water management, along with the implications of each solution.

The simulations also suggest that utilities that start off with a less diverse portfolio begin to use more of the market when drought happens and the city starts running out of water. In contrast, when utilities use more of the market at the start, the city saves money and averts water shortages in a drought.

"Economic instruments such as leases and options provide a lot of flexibility to urban water planners, particularly in the western United States," said Reed. "They provide the ability to be resilient to droughts."

Other researchers on the project include Joseph Robert Kasprzyk, graduate student in civil engineering, Penn State, and Gregory W. Characklis, associate professor of civil engineering and Brian R. Kirsch, graduate research assistant, both at University of North Carolina at Chapel Hill. The National Science Foundation supported this work.

Amitabh Avasthi | EurekAlert!
Further information:
http://www.psu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>