Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mineralization of sand particles boosts microbial water filtration

13.10.2014

Mineral coatings on sand particles actually encourage microbial activity in the rapid sand filters that are used to treat groundwater for drinking, according to a paper published ahead of print in Applied and Environmental Microbiology. These findings resoundingly refute, for the first time, the conventional wisdom that the mineral deposits interfere with microbial colonization of the sand particles.

"We find an overwhelmingly positive effect of mineral deposits on microbial activity and density," says corresponding author Barth F. Smets, of the Technical University of Denmark, Lyngby.

Mineral coating develops on the filter grain surface when groundwater is treated via rapid sand filtration in drinking water production. Coating certainly changes the physical and chemical properties of the filter material, but little is known about its effect on the activity, colonization, diversity and abundance of microbiota

Until now, rapid sand filters have been a bit of a black box, says first author Arda Gülay,one of Smets' graduate students.

"In rapid sand filters, a combination of chemical, biological, and physical reactions help in the removal and precipitation of the impurities—iron, manganese, ammonia, and methane, for example," says first author Arda Gülay,one of Smets' graduate students. In time, the sand filter grains become coated with minerals, much of which the system managers remove, periodically, via backwashing.

It turns out that the minerals form an abundant matrix around the sand particles, sort of honeycomb-like. "Bacterial cell density in these structures can be very high, and can be boosted further when extra ammonium is provided," says Smets. The bacteria are normally engaged in removal of ammonium, manganese, and other impurities from the groundwater.

In fact, during the investigation, the ammonium-removal activity increased as the mineral deposits grew. "These positive mineral-microbe interactions suggest protective and supportive roles of the deposits," says Smets. The investigators also measured a high diversity of ammonium and nitrite-oxidizing species.

The researchers' direction involved a serendipitous twist. Early on, they discovered an unexpected positive correlation between the number of bacteria, and the degree of mineral coating of the sand particles, says Smets. "This was deemed worthy of further investigation, but we thought it would be a high risk effort. It was not until we saw actual cross sections of the mineral phases, which clearly reveal microbial cell like structures inside the deposits that we became aware of the unique discoveries we were making."

A major question the research raises is whether the microbes influence the development of the microporosity, or simply take advantage of it, says Gülay. Either way, it could lead ultimately to steering the mineralization to create micro-structures designed to house microbial cells to perform specific functions.

###

The manuscript can be found online at http://bit.ly/asmtip1014a. The final version of the article is scheduled for the November 2014 issue of Applied and Environmental Microbiology.

Applied and Environmental Microbiology is a publication of the American Society for Microbiology (ASM). The ASM is the largest single life science society, composed of over 39,000 scientists and health professionals. Its mission is to advance the microbiological sciences as a vehicle for understanding life processes and to apply and communicate this knowledge for the improvement of health and environmental and economic well-being worldwide.

Garth Hogan | Eurek Alert!

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>