Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mighty diatoms: Global climate feedback from microscopic algae

19.03.2009
Tiny creatures at the bottom of the food chain called diatoms suck up nearly a quarter of the atmosphere’s carbon dioxide, yet research by Michigan State University scientists suggests they could become less able to “sequester” that greenhouse gas as the climate warms. The microscopic algae are a major component of plankton living in puddles, lakes and oceans.

Zoology professor Elena Litchman, with MSU colleague Christopher Klausmeier and Kohei Yoshiyama of the University of Tokyo, explored how nutrient limitation affects the evolution of the size of diatoms in different environments. Their findings underscore potential consequences for aquatic food webs and climate shifts.

“They are globally important since they ‘fix’ a significant amount of carbon,” Litchman explained of the single-cell diatoms. “When they die in the ocean, they sink to the bottom carrying the carbon from the atmosphere with them. They perform a tremendous service to the environment.”

Carbon dioxide buildup, due to a significant extent to burning fossil fuels and deforestation, is identified as the leading cause of climate change. Carbon dioxide is at its highest level in at least 650,000 years and rising, according to The National Academies, and only half of the CO2 produced now can be absorbed by plant life.

Litchman analyzed data from lakes and oceans across the United States, Europe and Asia and found a striking difference between the size of diatoms in freshwater and in marine environments. In oceans, diatoms grow to be 10 times larger on average than in freshwater and have a wider range of sizes.

One factor that affects growth is nutrient availability, Litchman said. The research shows that limitations by nitrogen and phosphorus exert different selective pressures on cell size. The availability of these nutrients depends on the mixing of water from greater depths. Using a mathematical model, Litchman and her colleagues found that when those nutrients are constantly limited and mixing is shallow, smaller diatoms thrive.

But when nitrate comes and goes, as often happens in roiling oceans, diatoms evolve larger to store nutrients for lean times. Deep mixing also benefits large diatoms. Depending on how intermittent the nitrate supply is and how deep the ocean mixes, there can be a wide range of diatom sizes. Size matters for the creatures that eat them and also for carbon sequestration, as large diatoms are more likely to sink when they die.

Changing climate could alter the mixing depths and delivery of nutrients to diatoms and their subsequent sizes with a cascade of consequences, Litchman said.

“On a global scale, increased ocean temperatures could make the ocean more stratified,” she explained. “This would cause less mixing and create stronger nutrient limitation and less frequent nutrient pulses. A change like this would select for different sizes of diatoms. If smaller sized diatoms dominate, then carbon sequestration becomes less efficient and there may be more CO2 remaining in the atmosphere, which would exacerbate global warming.”

Litchman and colleagues’ research was supported by the National Science Foundation and the J.S. McDonnell Foundation. Their findings were published Feb. 24 in the Proceedings of the National Academy of Sciences.

Michigan State University has been advancing knowledge and transforming lives through innovative teaching, research and outreach for more than 150 years. MSU is known internationally as a major public university with global reach and extraordinary impact. Its 17 degree-granting colleges attract scholars worldwide who are interested in combining education with practical problem solving.

Elena Litchman | EurekAlert!
Further information:
http://www.msu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>