Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mighty diatoms: Global climate feedback from microscopic algae

19.03.2009
Tiny creatures at the bottom of the food chain called diatoms suck up nearly a quarter of the atmosphere’s carbon dioxide, yet research by Michigan State University scientists suggests they could become less able to “sequester” that greenhouse gas as the climate warms. The microscopic algae are a major component of plankton living in puddles, lakes and oceans.

Zoology professor Elena Litchman, with MSU colleague Christopher Klausmeier and Kohei Yoshiyama of the University of Tokyo, explored how nutrient limitation affects the evolution of the size of diatoms in different environments. Their findings underscore potential consequences for aquatic food webs and climate shifts.

“They are globally important since they ‘fix’ a significant amount of carbon,” Litchman explained of the single-cell diatoms. “When they die in the ocean, they sink to the bottom carrying the carbon from the atmosphere with them. They perform a tremendous service to the environment.”

Carbon dioxide buildup, due to a significant extent to burning fossil fuels and deforestation, is identified as the leading cause of climate change. Carbon dioxide is at its highest level in at least 650,000 years and rising, according to The National Academies, and only half of the CO2 produced now can be absorbed by plant life.

Litchman analyzed data from lakes and oceans across the United States, Europe and Asia and found a striking difference between the size of diatoms in freshwater and in marine environments. In oceans, diatoms grow to be 10 times larger on average than in freshwater and have a wider range of sizes.

One factor that affects growth is nutrient availability, Litchman said. The research shows that limitations by nitrogen and phosphorus exert different selective pressures on cell size. The availability of these nutrients depends on the mixing of water from greater depths. Using a mathematical model, Litchman and her colleagues found that when those nutrients are constantly limited and mixing is shallow, smaller diatoms thrive.

But when nitrate comes and goes, as often happens in roiling oceans, diatoms evolve larger to store nutrients for lean times. Deep mixing also benefits large diatoms. Depending on how intermittent the nitrate supply is and how deep the ocean mixes, there can be a wide range of diatom sizes. Size matters for the creatures that eat them and also for carbon sequestration, as large diatoms are more likely to sink when they die.

Changing climate could alter the mixing depths and delivery of nutrients to diatoms and their subsequent sizes with a cascade of consequences, Litchman said.

“On a global scale, increased ocean temperatures could make the ocean more stratified,” she explained. “This would cause less mixing and create stronger nutrient limitation and less frequent nutrient pulses. A change like this would select for different sizes of diatoms. If smaller sized diatoms dominate, then carbon sequestration becomes less efficient and there may be more CO2 remaining in the atmosphere, which would exacerbate global warming.”

Litchman and colleagues’ research was supported by the National Science Foundation and the J.S. McDonnell Foundation. Their findings were published Feb. 24 in the Proceedings of the National Academy of Sciences.

Michigan State University has been advancing knowledge and transforming lives through innovative teaching, research and outreach for more than 150 years. MSU is known internationally as a major public university with global reach and extraordinary impact. Its 17 degree-granting colleges attract scholars worldwide who are interested in combining education with practical problem solving.

Elena Litchman | EurekAlert!
Further information:
http://www.msu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>