Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Measuring mercury levels: Nano-velcro detects water-borne toxic metals

11.09.2012
A strip of glass covered in hairy nanoparticles can cheaply and conveniently measure mercury, which attacks the nervous system, and other toxic metals in fluids.
Researchers at the Swiss Federal Institute of Technology (EPFL), Northwestern University and the University of Michigan found that their new method can measure methyl mercury, the most common form of mercury pollution, at unprecedentedly small concentrations. The system, which could test for metal toxins in drinking water and fish, is reported in the current edition of Nature Materials.

Methyl mercury dumped in lakes and rivers accumulates in fish, reaching its highest levels in large, predatory fish such as tuna and swordfish. Young children and pregnant women are advised to avoid eating these fish because mercury can affect the developing brain and nervous system. While metals in drinking water are measured periodically, these measurements say little about migratory fish, including tuna, which may pass through more polluted areas.

"The problem is that current monitoring techniques are too expensive and complex," said researcher Francesco Stellacci, the Constellium Chair holder at EPFL. "With a conventional method, you have to send samples to the laboratory, and the analysis equipment costs several million dollars."

Using the device invented by the Swiss-American team, measuring the mercury levels in water or dissolved fish meat is as simple as dipping a strip of coated glass into the fluid. Metals and metallic molecules, such as methyl mercury, typically become positively charged ions in water. When these ions drift between the hairy nanoparticles, the hairs close up, trapping the pollutant. Passing a current over the strip of glass reveals how many ions are caught in the "nano-velcro." Each ion allows the strip to conduct more electricity.

U-M researchers Hao Jiang and Sharon Glotzer, the Churchill Professor of Chemical Engineering, performed computer simulations that investigated how the nano-velcro traps pollutants. They showed that the hairy nanoparticles are choosey about which ions they capture, confirming that the strips can give reliable measures of specific toxins as demonstrated by the experimental findings of the Swiss group.

"By making detection of pollutants and toxins cheap and easy to do, more testing at the source will lead to safer foods on the dinner table and in kids' lunchboxes," Glotzer said.

The scientists targeted particular pollutants by varying the length of the nano-hairs. This approach is especially successful for methyl mercury, and the device can measure it with record-breaking accuracy, detecting concentrations as low as 600 methyl mercury ions per cubic centimeter of water. Fortunately, that level of precision won't break the bank. The researchers estimate that the coated glass strips could cost less than 10 dollars each, while the measurement device will cost only a few hundred dollars. It could gauge the concentration of metals onsite and within minutes.

The researchers tested their method in Lake Michigan, near Chicago.

"The goal was to compare our measurements to FDA measurements done using conventional methods," Stellacci said.

Despite the industrial activity in the region, mercury levels were extremely low, in agreement with the FDA's analysis. The team also tested a mosquito fish from the Everglades.

"We measured tissue that had been dissolved in acid. The goal was to see if we could detect even very minuscule quantities," said Bartosz Grzybowski, the K. Burgess Professor of Physical Chemistry and Chemical Systems Engineering at Northwestern University, noting the species is too low on the food chain to accumulate high levels of mercury.

The United States Geological Survey reported near-identical results after analyzing the same sample.

"With this technology, it will be possible to conduct tests on a much larger scale in the field, or even in fish before they are put on the market," said researcher Hyewon Kim, MIT student visiting EPFL.

Funding for this research came from ENI, via the ENI-MIT Alliance; the U.S. Defense Threat Reduction Agency via a grant to MIT and U-M; and the U.S. Department of Energy via a Nonequilibrium Energy Research Center grant to Northwestern and the U-M.


Related Links:
Sharon Glotzer: http://che.engin.umich.edu/people/glotzer.html
Francesco Stellacci: http://people.epfl.ch/francesco.stellacci
Bartosz Grzybowski: http://dysa.northwestern.edu/bartosz.html

U-M Sustainability fosters a more sustainable world through collaborations across campus and beyond aimed at educating students, generating new knowledge, and minimizing our environmental footprint. Learn more at sustainability.umich.edu.

Nicole Casal Moore | EurekAlert!
Further information:
http://www.umich.edu

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>