Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mathematical Model Could Help Predict and Prevent Future Extinctions

26.01.2011
Research could rescue fragile ecosystems and halt complex cascade events

In an effort to better understand the dynamics of complex networks, scientists have developed a mathematical model to describe interactions within ecological food webs. This research, performed by Northwestern University physics professor Adilson Motter and his student, Sagar Sahasrabudhe, is published in the January 25 issue of Nature Communications. The work illustrates how human intervention may effectively aid species conservation efforts.

"Our study provides a theoretical basis for management efforts that would aim to mitigate extinction cascades in food web networks. There is evidence that a significant fraction of all extinctions are caused not by a primary perturbation but instead by the propagation of a cascade," said Motter.

Extinction cascades are often observed following the loss of a key species within an ecosystem. As the system changes to compensate for the loss, availability of food, territory and other resources to each of the remaining members can fluctuate wildly, creating a boom-or-bust environment that can lead to even more extinctions. According to the study, more than 70 percent of these extinctions are preventable, assuming that the system can be brought into balance using only available resources--no new factors may be introduced.

Motter explained further, "We find that extinction cascades can often be mitigated by suppressing--rather than enhancing--the populations of specific species. In numerous cases, it is predicted that even the proactive removal of a species that would otherwise be extinct by a cascade can prevent the extinction of other species."

The finding may seem counterintuitive to conservationists because the compensatory actions seem to inflict further damage to the system. However, when the entire ecosystem is considered, the effect is beneficial. This news holds promise for those charged with maintaining Earth's biodiversity and natural resources--the health of which can counteract many of the causes of climate change, and some man-made disasters such as the Gulf of Mexico oil spill.

The dodo bird, Raphus cucullatus, is one example of extinction due to human activity. The dodo was a large, flightless bird that became extinct in the 1600s. It is likely that a combination of factors including hunting, loss of habitat, and perhaps even a flash flood, stressed the ecosystem on the island of Mauritius, home of the dodo. Some researchers think that human introduction of non-native species, such as dogs, pigs, cats and rats to the island, is what ultimately lead to the demise of the dodo.

In any case, in the future, it may be possible to avoid extinction of some species in stressed ecosystems by applying the new method of analysis developed by Motter.

The goal of this project, funded by the National Science Foundation's Division of Mathematical Sciences, is to develop mathematical methods to study dynamical processes in complex networks. Although the specific application mentioned here may be useful in management of ecosystems, the mathematical foundation underlying the analysis is much more universal. The broad concept is innovative in the area of complex networks because it concludes that large-scale failures can be avoided by focusing on preventing the waves of failure that follow the initial event.

This approach could be used to stabilize a wide array of complex networks. It can apply to biochemical networks in order to slow or stop progression of diseases caused by variations inside individual cells. It can also be used to manage technological networks such as the smart grid to prevent blackouts. It can even apply to regulation of complicated financial networks by identifying key factors in the early stages of a financial downturn, which, when met with human intervention, could potentially save billions of dollars.

The world is a complicated place that gets even trickier when trying to mathematically explain a complex network, especially when the network evolves within an environment that is itself changing. But, Motter says his mathematical model is promising for the study of changing environments.

"Uncertainty itself is not a problem," he quipped. "The problem comes when you cannot estimate uncertainty."

Media Contacts
Lisa Van Pay, NSF (703) 292-8796 lvanpay@nsf.gov
Program Contacts
Henry A. Warchall, NSF (703) 292-4861 hwarchal@nsf.gov
Principal Investigators
Adilson Motter, Northwestern University (847) 491-4611 motter@northwestern.edu
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2010, its budget is about $6.9 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives over 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

Lisa Van Pay | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>