Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mathematical Model Could Help Predict and Prevent Future Extinctions

26.01.2011
Research could rescue fragile ecosystems and halt complex cascade events

In an effort to better understand the dynamics of complex networks, scientists have developed a mathematical model to describe interactions within ecological food webs. This research, performed by Northwestern University physics professor Adilson Motter and his student, Sagar Sahasrabudhe, is published in the January 25 issue of Nature Communications. The work illustrates how human intervention may effectively aid species conservation efforts.

"Our study provides a theoretical basis for management efforts that would aim to mitigate extinction cascades in food web networks. There is evidence that a significant fraction of all extinctions are caused not by a primary perturbation but instead by the propagation of a cascade," said Motter.

Extinction cascades are often observed following the loss of a key species within an ecosystem. As the system changes to compensate for the loss, availability of food, territory and other resources to each of the remaining members can fluctuate wildly, creating a boom-or-bust environment that can lead to even more extinctions. According to the study, more than 70 percent of these extinctions are preventable, assuming that the system can be brought into balance using only available resources--no new factors may be introduced.

Motter explained further, "We find that extinction cascades can often be mitigated by suppressing--rather than enhancing--the populations of specific species. In numerous cases, it is predicted that even the proactive removal of a species that would otherwise be extinct by a cascade can prevent the extinction of other species."

The finding may seem counterintuitive to conservationists because the compensatory actions seem to inflict further damage to the system. However, when the entire ecosystem is considered, the effect is beneficial. This news holds promise for those charged with maintaining Earth's biodiversity and natural resources--the health of which can counteract many of the causes of climate change, and some man-made disasters such as the Gulf of Mexico oil spill.

The dodo bird, Raphus cucullatus, is one example of extinction due to human activity. The dodo was a large, flightless bird that became extinct in the 1600s. It is likely that a combination of factors including hunting, loss of habitat, and perhaps even a flash flood, stressed the ecosystem on the island of Mauritius, home of the dodo. Some researchers think that human introduction of non-native species, such as dogs, pigs, cats and rats to the island, is what ultimately lead to the demise of the dodo.

In any case, in the future, it may be possible to avoid extinction of some species in stressed ecosystems by applying the new method of analysis developed by Motter.

The goal of this project, funded by the National Science Foundation's Division of Mathematical Sciences, is to develop mathematical methods to study dynamical processes in complex networks. Although the specific application mentioned here may be useful in management of ecosystems, the mathematical foundation underlying the analysis is much more universal. The broad concept is innovative in the area of complex networks because it concludes that large-scale failures can be avoided by focusing on preventing the waves of failure that follow the initial event.

This approach could be used to stabilize a wide array of complex networks. It can apply to biochemical networks in order to slow or stop progression of diseases caused by variations inside individual cells. It can also be used to manage technological networks such as the smart grid to prevent blackouts. It can even apply to regulation of complicated financial networks by identifying key factors in the early stages of a financial downturn, which, when met with human intervention, could potentially save billions of dollars.

The world is a complicated place that gets even trickier when trying to mathematically explain a complex network, especially when the network evolves within an environment that is itself changing. But, Motter says his mathematical model is promising for the study of changing environments.

"Uncertainty itself is not a problem," he quipped. "The problem comes when you cannot estimate uncertainty."

Media Contacts
Lisa Van Pay, NSF (703) 292-8796 lvanpay@nsf.gov
Program Contacts
Henry A. Warchall, NSF (703) 292-4861 hwarchal@nsf.gov
Principal Investigators
Adilson Motter, Northwestern University (847) 491-4611 motter@northwestern.edu
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2010, its budget is about $6.9 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives over 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

Lisa Van Pay | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>