Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Massive Fires Remain Destructive After the Burn Has Gone

27.06.2011
This season’s massive Arizona fires making headlines around the globe have destroyed dozens of structures and burned nearly three-quarters of a million acres.

They also are contributing to global warming, scientists say, by upsetting the carbon balance while they are burning and for years to come.

Trees breathe in carbon dioxide, but how long they hold onto it affects the amount of greenhouse gases in the atmosphere.

Charred logs, standing dead tree trunks and decaying branches mark the site of the 1996 Hochderffer Fire, a “crown fire” that burned hot through 16,000 acres west of the San Francisco Peaks north of Flagstaff.

Mike Stoddard, a forest ecologist with the Northern Arizona University Ecological Restoration Institute, has been looking for a sign, any sign, of ponderosa pine seedlings 15 years after the fire.

“These large fires are devastating our forests,” Stoddard said. “We’re concerned that ponderosa pine is not regenerating after these wildfire events.”

Crown fires burn into the canopies and treetops or crowns of the trees—massive, intense crown fires, such as the Wallow Fire in eastern Arizona, are not natural in the ponderosa pine forest. Naturally occurring ponderosa pine fires burn along the ground, or base, of the trees.

Scientists also are concerned about the invisible impacts of crown fires.

In a study conducted from 2001 to 2007, forest ecologist Matthew Hurteau with NAU’s School of Earth Sciences and Environmental Sustainability found that the nation’s wildfire emissions were the equivalent of 4 percent to 6 percent of all emissions from burning coal, oil and natural gas. The percentage of lingering emissions is even greater.

“We’re looking to forests to take in carbon, thereby lowering the greenhouse gases. But at a site like the Hochderffer Fire, the grassy vegetation that’s growing in is not making up for the amount of carbon that’s being released from the dead trees,” he said.

Across Arizona Highway 180, the story is much the same. NAU forestry professor Tom Kolb is calculating the amount of carbon dioxide moving between the land and the air at the site of the Horseshoe Fire. This 8,000-acre crown fire also burned in 1996.

“The fire has had a long-term legacy effect on the capacity of this site to take in and store carbon dioxide,” Kolb said. “This site has gone from being a carbon sink, where carbon was being stored, to a carbon source, where carbon is being released.”

With carbon making up about half the dry weight of a tree, researchers say overstocked ponderosa pine thickets can store a lot of carbon, at least for a while.

“Storing carbon in lots of little trees in a dense forest is like investing your retirement funds in junk bonds. It’s risky,” Hurteau said. “Our research has shown that if we reduce the amount of trees per acre and return ground fire to the system to manage those surface fuels, the carbon left in the live trees is much more stable because it’s less vulnerable to crown fire.”

Carbon flux research south of Flagstaff where excess small diameter ponderosas have been removed shows the remaining trees have become more vigorous.

“They photosynthesize at a much greater rate than the trees in the un-thinned situation,” Kolb said. “The thinned forest has an equal to or slighter greater rate of carbon sequestration than an un-thinned forest.”

Bonnie Stevens | Newswise Science News
Further information:
http://www.nau.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>