Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Massive Fires Remain Destructive After the Burn Has Gone

27.06.2011
This season’s massive Arizona fires making headlines around the globe have destroyed dozens of structures and burned nearly three-quarters of a million acres.

They also are contributing to global warming, scientists say, by upsetting the carbon balance while they are burning and for years to come.

Trees breathe in carbon dioxide, but how long they hold onto it affects the amount of greenhouse gases in the atmosphere.

Charred logs, standing dead tree trunks and decaying branches mark the site of the 1996 Hochderffer Fire, a “crown fire” that burned hot through 16,000 acres west of the San Francisco Peaks north of Flagstaff.

Mike Stoddard, a forest ecologist with the Northern Arizona University Ecological Restoration Institute, has been looking for a sign, any sign, of ponderosa pine seedlings 15 years after the fire.

“These large fires are devastating our forests,” Stoddard said. “We’re concerned that ponderosa pine is not regenerating after these wildfire events.”

Crown fires burn into the canopies and treetops or crowns of the trees—massive, intense crown fires, such as the Wallow Fire in eastern Arizona, are not natural in the ponderosa pine forest. Naturally occurring ponderosa pine fires burn along the ground, or base, of the trees.

Scientists also are concerned about the invisible impacts of crown fires.

In a study conducted from 2001 to 2007, forest ecologist Matthew Hurteau with NAU’s School of Earth Sciences and Environmental Sustainability found that the nation’s wildfire emissions were the equivalent of 4 percent to 6 percent of all emissions from burning coal, oil and natural gas. The percentage of lingering emissions is even greater.

“We’re looking to forests to take in carbon, thereby lowering the greenhouse gases. But at a site like the Hochderffer Fire, the grassy vegetation that’s growing in is not making up for the amount of carbon that’s being released from the dead trees,” he said.

Across Arizona Highway 180, the story is much the same. NAU forestry professor Tom Kolb is calculating the amount of carbon dioxide moving between the land and the air at the site of the Horseshoe Fire. This 8,000-acre crown fire also burned in 1996.

“The fire has had a long-term legacy effect on the capacity of this site to take in and store carbon dioxide,” Kolb said. “This site has gone from being a carbon sink, where carbon was being stored, to a carbon source, where carbon is being released.”

With carbon making up about half the dry weight of a tree, researchers say overstocked ponderosa pine thickets can store a lot of carbon, at least for a while.

“Storing carbon in lots of little trees in a dense forest is like investing your retirement funds in junk bonds. It’s risky,” Hurteau said. “Our research has shown that if we reduce the amount of trees per acre and return ground fire to the system to manage those surface fuels, the carbon left in the live trees is much more stable because it’s less vulnerable to crown fire.”

Carbon flux research south of Flagstaff where excess small diameter ponderosas have been removed shows the remaining trees have become more vigorous.

“They photosynthesize at a much greater rate than the trees in the un-thinned situation,” Kolb said. “The thinned forest has an equal to or slighter greater rate of carbon sequestration than an un-thinned forest.”

Bonnie Stevens | Newswise Science News
Further information:
http://www.nau.edu

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>