Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Massive Fires Remain Destructive After the Burn Has Gone

27.06.2011
This season’s massive Arizona fires making headlines around the globe have destroyed dozens of structures and burned nearly three-quarters of a million acres.

They also are contributing to global warming, scientists say, by upsetting the carbon balance while they are burning and for years to come.

Trees breathe in carbon dioxide, but how long they hold onto it affects the amount of greenhouse gases in the atmosphere.

Charred logs, standing dead tree trunks and decaying branches mark the site of the 1996 Hochderffer Fire, a “crown fire” that burned hot through 16,000 acres west of the San Francisco Peaks north of Flagstaff.

Mike Stoddard, a forest ecologist with the Northern Arizona University Ecological Restoration Institute, has been looking for a sign, any sign, of ponderosa pine seedlings 15 years after the fire.

“These large fires are devastating our forests,” Stoddard said. “We’re concerned that ponderosa pine is not regenerating after these wildfire events.”

Crown fires burn into the canopies and treetops or crowns of the trees—massive, intense crown fires, such as the Wallow Fire in eastern Arizona, are not natural in the ponderosa pine forest. Naturally occurring ponderosa pine fires burn along the ground, or base, of the trees.

Scientists also are concerned about the invisible impacts of crown fires.

In a study conducted from 2001 to 2007, forest ecologist Matthew Hurteau with NAU’s School of Earth Sciences and Environmental Sustainability found that the nation’s wildfire emissions were the equivalent of 4 percent to 6 percent of all emissions from burning coal, oil and natural gas. The percentage of lingering emissions is even greater.

“We’re looking to forests to take in carbon, thereby lowering the greenhouse gases. But at a site like the Hochderffer Fire, the grassy vegetation that’s growing in is not making up for the amount of carbon that’s being released from the dead trees,” he said.

Across Arizona Highway 180, the story is much the same. NAU forestry professor Tom Kolb is calculating the amount of carbon dioxide moving between the land and the air at the site of the Horseshoe Fire. This 8,000-acre crown fire also burned in 1996.

“The fire has had a long-term legacy effect on the capacity of this site to take in and store carbon dioxide,” Kolb said. “This site has gone from being a carbon sink, where carbon was being stored, to a carbon source, where carbon is being released.”

With carbon making up about half the dry weight of a tree, researchers say overstocked ponderosa pine thickets can store a lot of carbon, at least for a while.

“Storing carbon in lots of little trees in a dense forest is like investing your retirement funds in junk bonds. It’s risky,” Hurteau said. “Our research has shown that if we reduce the amount of trees per acre and return ground fire to the system to manage those surface fuels, the carbon left in the live trees is much more stable because it’s less vulnerable to crown fire.”

Carbon flux research south of Flagstaff where excess small diameter ponderosas have been removed shows the remaining trees have become more vigorous.

“They photosynthesize at a much greater rate than the trees in the un-thinned situation,” Kolb said. “The thinned forest has an equal to or slighter greater rate of carbon sequestration than an un-thinned forest.”

Bonnie Stevens | Newswise Science News
Further information:
http://www.nau.edu

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>