Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New Maps May Reduce Tourism Impacts on Hawaiian Dolphins

Over-eager tourists intent on seeing spinner dolphins up close may inadvertently be disturbing the charismatic animals’ daytime rest periods and driving them out of safe habitats in bays along Hawai’i’s coast.

But a study led by researchers at Duke and Stony Brook universities gives scientists and resource managers a promising new tool to curb the frequency of the repeated human disturbances and help reduce their negative impacts.

“Using the maps produced through this study we can identify the bays where the effects of human activities on spinner dolphins should be monitored most closely, and where immediate conservation actions are required,” said David W. Johnston, research scientist at Duke’s Nicholas School of the Environment.

The mapping models developed by the researchers indicated that only a small number of bays – 21 out of 99 – in a study area along the western coastlines of the main Hawaiian islands were suitable habitats for resting dolphins. Knowing this, Johnston said, “conservation efforts can be focused on specific areas of importance.”

“We may be able to minimize detrimental effects on dolphins by putting restrictions or preventative measures into place in a relatively small number of bays, rather than limiting access to dolphins along the entire coast,” said the study’s lead author, Lesley H. Thorne, a lecturer in marine science at Stony Brook University, who received her PhD from Duke in 2010. “That benefits tourists and tourism operators as well as the dolphins.”

To create the new mapping models, the researchers used the geographic coordinates and key environmental factors – such as water depth, the size and proportions of the bays, and proximity to deep-water foraging grounds – for hundreds of spinner dolphin sightings made throughout the study area between 2000 and 2010.

Spinners are small dolphins famed for their graceful aerial movements and balletic spins. Found in tropical and subtropical oceans around the world, coastal populations of the animals divide their time between daytime rest periods in shallow, protected bays and nighttime foraging in more exposed waters.

Distinguishing between sightings of resting and active dolphins was key to defining critical habitats, Thorne said, because while socially active spinner dolphins are more tolerant of humans’ presence, resting dolphins will leave the safety of a bay and retreat to less suitable open waters if they are repeatedly interrupted.

“Sleep is essential for most animals,” added Johnston. “When deprived of their necessary ‘zzzz’s,’ they gradually show a decreased ability to process information and remain attentive to environmental stimuli. In technical lingo, we call this a ‘vigilance decrement’.”

Spinner dolphins are no exception to the rule, he said. Over time, dolphins that are harassed by people daily during rest periods will never fully recover their vigilance decrement, and their ability to forage successfully and detect the presence of nearby predators will be degraded. Their ability to produce sounds used for communication and navigation may also be impaired.

Scientists and conservationists have long worried that spinners’ popularity with tourists – and overlap of their resting habitats with popular ocean recreation destinations – may be placing them at risk. Reports of interactions have increased sharply in recent years, but few published studies have examined the detrimental impacts these interruptions may have on the animals, especially at the population level.

“It would be next to impossible to survey spinner populations and human activities in every bay that might be a resting habitat. We’re talking about hundreds of bays in the Hawaiian islands alone,” said Thorne.

“Using predictive models, such as the maximum entropy spatial modeling approaches we’ve produced, is a much more cost-effective method,” she said. “This type of modeling has only recently been applied to the study of marine mammals, but our work suggests it may be especially useful for studies (where data is) derived from opportunistic sightings and surveys using different types of research platforms.”

The study was published August 27 in the online, peer-reviewed journal PLoS ONE, at

Thorne and Johnston plan to test their models by conducting similar studies of spinner dolphin distributions and habitat use in the Northwestern Hawaiian Islands and elsewhere in the Pacific islands region. Results from those studies, they said, could confirm the new models’ usefulness.

Johnston and Thorne’s co-authors on the PLoS ONE study include Dean L. Urban, professor of landscape ecology at Duke’s Nicholas School, and Lars Bejder, associate professor at Murdoch University, Australia, and adjunct assistant professor at Duke.

The data on spinner dolphin sightings used to develop the models in the study were provided by a team of eight additional co-authors from Murdoch University, the Pacific Islands Photo-Identification Network, the Cascadia Research Collective, the Hawai’i Marine Mammal Consortium, the Hawai’i Association for Marine Education and Research, the Dolphin Institute, the University of Hawai’i (UH) at Hilo, UH at Mânoa, and Marine Mammal Research Consultants.

Note: David Johnston can be reached for additional comment at (252) 504-7593 or Lesley Thorne can be reached at (631) 632-5117 or

Tim Lucas | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>