Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Maps May Reduce Tourism Impacts on Hawaiian Dolphins

28.08.2012
Over-eager tourists intent on seeing spinner dolphins up close may inadvertently be disturbing the charismatic animals’ daytime rest periods and driving them out of safe habitats in bays along Hawai’i’s coast.

But a study led by researchers at Duke and Stony Brook universities gives scientists and resource managers a promising new tool to curb the frequency of the repeated human disturbances and help reduce their negative impacts.

“Using the maps produced through this study we can identify the bays where the effects of human activities on spinner dolphins should be monitored most closely, and where immediate conservation actions are required,” said David W. Johnston, research scientist at Duke’s Nicholas School of the Environment.

The mapping models developed by the researchers indicated that only a small number of bays – 21 out of 99 – in a study area along the western coastlines of the main Hawaiian islands were suitable habitats for resting dolphins. Knowing this, Johnston said, “conservation efforts can be focused on specific areas of importance.”

“We may be able to minimize detrimental effects on dolphins by putting restrictions or preventative measures into place in a relatively small number of bays, rather than limiting access to dolphins along the entire coast,” said the study’s lead author, Lesley H. Thorne, a lecturer in marine science at Stony Brook University, who received her PhD from Duke in 2010. “That benefits tourists and tourism operators as well as the dolphins.”

To create the new mapping models, the researchers used the geographic coordinates and key environmental factors – such as water depth, the size and proportions of the bays, and proximity to deep-water foraging grounds – for hundreds of spinner dolphin sightings made throughout the study area between 2000 and 2010.

Spinners are small dolphins famed for their graceful aerial movements and balletic spins. Found in tropical and subtropical oceans around the world, coastal populations of the animals divide their time between daytime rest periods in shallow, protected bays and nighttime foraging in more exposed waters.

Distinguishing between sightings of resting and active dolphins was key to defining critical habitats, Thorne said, because while socially active spinner dolphins are more tolerant of humans’ presence, resting dolphins will leave the safety of a bay and retreat to less suitable open waters if they are repeatedly interrupted.

“Sleep is essential for most animals,” added Johnston. “When deprived of their necessary ‘zzzz’s,’ they gradually show a decreased ability to process information and remain attentive to environmental stimuli. In technical lingo, we call this a ‘vigilance decrement’.”

Spinner dolphins are no exception to the rule, he said. Over time, dolphins that are harassed by people daily during rest periods will never fully recover their vigilance decrement, and their ability to forage successfully and detect the presence of nearby predators will be degraded. Their ability to produce sounds used for communication and navigation may also be impaired.

Scientists and conservationists have long worried that spinners’ popularity with tourists – and overlap of their resting habitats with popular ocean recreation destinations – may be placing them at risk. Reports of interactions have increased sharply in recent years, but few published studies have examined the detrimental impacts these interruptions may have on the animals, especially at the population level.

“It would be next to impossible to survey spinner populations and human activities in every bay that might be a resting habitat. We’re talking about hundreds of bays in the Hawaiian islands alone,” said Thorne.

“Using predictive models, such as the maximum entropy spatial modeling approaches we’ve produced, is a much more cost-effective method,” she said. “This type of modeling has only recently been applied to the study of marine mammals, but our work suggests it may be especially useful for studies (where data is) derived from opportunistic sightings and surveys using different types of research platforms.”

The study was published August 27 in the online, peer-reviewed journal PLoS ONE, at http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0043167.

Thorne and Johnston plan to test their models by conducting similar studies of spinner dolphin distributions and habitat use in the Northwestern Hawaiian Islands and elsewhere in the Pacific islands region. Results from those studies, they said, could confirm the new models’ usefulness.

Johnston and Thorne’s co-authors on the PLoS ONE study include Dean L. Urban, professor of landscape ecology at Duke’s Nicholas School, and Lars Bejder, associate professor at Murdoch University, Australia, and adjunct assistant professor at Duke.

The data on spinner dolphin sightings used to develop the models in the study were provided by a team of eight additional co-authors from Murdoch University, the Pacific Islands Photo-Identification Network, the Cascadia Research Collective, the Hawai’i Marine Mammal Consortium, the Hawai’i Association for Marine Education and Research, the Dolphin Institute, the University of Hawai’i (UH) at Hilo, UH at Mânoa, and Marine Mammal Research Consultants.

Note: David Johnston can be reached for additional comment at (252) 504-7593 or david.johnston@duke.edu Lesley Thorne can be reached at (631) 632-5117 or Lesley.thorne@stonybrook.edu.

Tim Lucas | EurekAlert!
Further information:
http://www.stonybrook.edu
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0043167
http://www.duke.edu

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>