Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Long-term research reveals how climate change is playing out in real ecosystems

03.12.2012
Around the world, the effects of global climate change are increasingly evident and difficult to ignore.

However, evaluations of the local effects of climate change are often confounded by natural and human induced factors that overshadow the effects of changes in climate on ecosystems. In the December issue of the journal BioScience, a group of scientists writing on long-term studies of watershed and natural elevation gradients at the Hubbard Brook Experimental Forest in New Hampshire and in the surrounding region report a number of surprising results that may shed more light on the complex nature of climate change.

According to Peter Groffman, one of the lead authors and a principal investigator at the Hubbard Brook Long Term Ecological Research (LTER) program, these studies highlight the value of long-term integrated research to assessments of the subtle effects of changing climate on complex ecosystems.

"This analysis shows the power and value of long-term ecological research," says Groffman. "The ability to use long-term data streams as a platform for asking detailed questions about complex changes in the environment is the only way that society will be able to grapple with how climate change is playing out at the local scales that most directly affect people."

While the scale and pervasive nature of climate change can motivate scientists to try approaches that depict atmospheric and ecosystem processes at regional and global scales, these approaches may not give a complete and accurate assessment of the effects of climate change on ecosystem structure, function, and services at local scales.

Because climate change plays out on a complex and dynamic landscape with intertwined patterns of soils, vegetation, and hydrologic flowpaths and interacts with many human and natural factors over many areas and time periods, the report says the various effects of climate change cannot be predicted purely from the broad effects of temperature and precipitation on ecosystem properties. The authors argue that long-term integrated studies, such as those conducted over the past 50 years at Hubbard Brook, should be an essential component of climate change research and assessment. In their estimation, a combination of long-term and in depth measurements is essential for understanding the interplay between climate and forest ecosystem dynamics.

At Hubbard Brook, that interplay has produced surprising effects on hydrologic variables such as evapotranspiration, streamflow, and soil moisture; the importance of changes in periodic biological occurrences on water, carbon, and nitrogen fluxes during critical transition periods; climate change effects on plant and animal community composition and ecosystem services in winter; and the effects of human induced disturbances and land-use history on the composition of plant communities.

The report recommends further research on how climate change affects multiple components of ecosystem structure and function at specific sites to investigate what determines the composition of plant and animal communities, the rate of flow of water, and other natural and human elements that impact ecosystems in many areas of the globe.

Groffman says the results from these detailed studies should be incorporated into broader approaches that include modeling, experiments and long-term monitoring at multiple scales. The report suggests that coordination of long-term research efforts and development of common approaches will improve the scientific understanding and response to the overarching challenge that climate change presents to science and society.

About LTER

The LTER program was created in 1980 by the National Science Foundation to conduct research on ecological issues that can last decades and span huge geographical areas. The network brings together a multi-disciplinary group of more than 2000 scientists and graduate students. The 26 LTER sites encompass diverse ecosystems in the continental United States, Alaska, Antarctica, and islands in the Caribbean and the Pacific—including deserts, estuaries, lakes, oceans, coral reefs, prairies, forests, alpine and Arctic tundra, urban areas, and production agriculture.

Media Contact: Lori Quillen, (845) 677-7600 x121

Lori Quillen | EurekAlert!
Further information:
http://www.lternet.edu

Further reports about: Hubbard LTER coral reef ecosystem process ecosystem structure global scale

More articles from Ecology, The Environment and Conservation:

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

nachricht The disappearance of common species
01.02.2018 | Technical University of Munich (TUM)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>