Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Life discovered on dead hydrothermal vents

25.01.2012
New evidence found for ecological succession in microbial communities on deep-sea hydrothermal vents

Scientists at USC have uncovered evidence that even when hydrothermal sea vents go dormant and their blistering warmth turns to frigid cold, life goes on.

Or rather, it is replaced.

A team led by USC microbiologist Katrina Edwards found that the microbes that thrive on hot fluid methane and sulfur spewed by active hydrothermal vents are supplanted, once the vents go cold, by microbes that feed on the solid iron and sulfur that make up the vents themselves.

These findings – based on samples collected for Edwards by US Navy deep sea submersible Alvin (famed for its exploration of the Titanic in 1986) – provide a rare example of ecological succession in microbes.

The findings were published today in mBio in an article authored by Edwards, USC graduate researcher Jason Sylvan, and Brandy Toner of the University of Minnesota.

Ecological succession is the biological phenomenon whereby one form of life takes the place of another as conditions in an area change – a phenomenon well-documented in plants and animals.

For example, after a forest fire, different species of trees replace the older ones that had stood for decades.

Scientists have long known that active vents provided the heat and nutrients necessary to maintain microbes. But dormant vents – lacking a flow of hot, nutrient-rich water – were thought to be devoid of life.

Hydrothermal vents are formed on the ocean floor with the motion of tectonic plates. Where the sea floor becomes thin, the hot magma below the surface creates a fissure that spews geothermally heated water – reaching temperatures of more than 400° C.

After a (geologically) brief time of actively venting into the ocean, the same sea floor spreading that brought them into being shuffles them away from the hotspot. The vents grow cold and dormant.

"Hydrothermal vents are really ephemeral in nature," said Edwards, professor of biological sciences at the USC Dornsife College of Letters, Arts and Sciences.

Microbial communities on sea floor vents have been studied since the vents themselves were first discovered in the late 1970s. Until recently, little attention had been paid to them once they stopped venting, though.

Sylvan said he would like to take samples on vents of various ages to catalogue exactly how the succession from one population of microbes to the next occurs.

Edwards, who recently returned from a two-month expedition to collect samples of microbes deep below the ocean floor, said that the next step will be to see if the ecological succession is mirrored in microbes that exist beneath the surface of the rock.

"The next thing is to go subterranean," she said.

Their research was funded by the Keck Foundation, the Gordon and Betty Moore Foundation, the National Research Council and NASA postdoctoral fellowship programs.

Robert Perkins | EurekAlert!
Further information:
http://www.usc.edu

More articles from Ecology, The Environment and Conservation:

nachricht Minimized water consumption in CSP plants - EU project MinWaterCSP is making good progress
05.12.2017 | Steinbeis-Europa-Zentrum

nachricht Jena Experiment: Loss of species destroys ecosystems
28.11.2017 | Technische Universität München

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>