Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When leaves fall, more is occurring than a change of weather

23.09.2008
MU researchers identify genetic pathway of abscission, which could lead to future economic benefits

A falling leaf often catches a poet's eye, but scientists also wonder about the phenomenon that causes leaves to fall, or abscission in plants. Abscission is the physiological process plants use to separate entire organs, such as leaves, petals, flowers and fruit, that allow plants to discard non-functional or infected organs.

University of Missouri researchers have uncovered the genetic pathway that controls abscission in the plant species Arabidopsis thaliana. The ability to control abscission in plants is of special interest to those in the commercial fruit tree and cut flower industries, which rely heavily on abscission-promoting or inhibiting agents to regulate fruit quality and pre-harvest fruit drop.

"Understanding the physiological mechanism by which plants control abscission is important for understanding both plant development and plant defense mechanisms," said John Walker, director of the MU Interdisciplinary Plant Group at the Christopher S. Bond Life Sciences Center. "Insight into the process of abscission in Arabidopsis thaliana provides a foundation for understanding this fundamental physiological process in other plant species."

Plants abscise an organ for a number of reasons, according Walker. Aged leaves, for example, may be shed to facilitate the recycling of nutrients, ripening fruits dropped to promote seed dispersal and infected or diseased floral organs discarded to prevent the spread of disease. However, why Arabidopsis thaliana is a small flowering plant that is native to Europe, Asia and northwestern Africa, sheds its floral parts after maturation is unclear. The floral part on the plant does not take significant space and abscission does not appear to serve an obvious function. Yet, the genes for abscission have been there for a really long time, Walker said.

Previous studies analyzing abscission in plants have implicated several different genes and gene products. Walker and his colleagues are the first to identify a pathway of genes involved in the process of abscission in Arabidopsis by using a combination of molecular genetics and imagine techniques.

"The process of abscission is a phenomenon that we have yet to fully understand," said Walker, who is also a professor of biological sciences in MU's College of Arts and Science. "Several different genes are involved in the process. Instead of looking at individual genes or proteins, we looked at an entire network at once to see how the difference genes work together in abscission."

Kelsey Jackson | EurekAlert!
Further information:
http://www.missouri.edu

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>