Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First-of-its-kind study reveals surprising ecological effects of earthquake and tsunami

03.05.2012
The reappearance of long-forgotten habitats and the resurgence of species unseen for years may not be among the expected effects of a natural disaster.

Yet that's exactly what researchers have found on the sandy beaches of south central Chile, after an 8.8-magnitude earthquake and devastating tsunami in 2010. Their study also revealed a preview of the problems wrought by sea level rise –– a major symptom of climate change.

In a scientific first, researchers from Universidad Austral de Chile and UC Santa Barbara's Marine Science Institute (MSI) were able to document the before-and-after ecological impacts of such cataclysmic occurrences. A new paper appearing today in the journal PLoS ONE elucidates the surprising results of their collaborative study, pointing to the potential effects of natural disasters on sandy beaches worldwide.

"So often you think of earthquakes as causing total devastation, and adding a tsunami on top of that is a major catastrophe for coastal ecosystems. As expected, we saw high mortality of intertidal life on beaches and rocky shores, but the ecological recovery at some of our sandy beach sites was remarkable," said Jenifer Dugan, an associate research biologist at MSI. " Dune plants are coming back in places there haven't been plants, as far as we know, for a very long time. The earthquake created sandy beach habitat where it had been lost. This is not the initial ecological response you might expect from a major earthquake and tsunami."
Their findings owe a debt to serendipity. With joint support from Chile's Fondo Nacional de Desarrollo Científico y Tecnológico and the U.S. National Science Foundation's Long Term Ecological Research program, the scientists were already knee-deep in a collaborative study of how sandy beaches in Santa Barbara and south central Chile respond, ecologically, to man-made armoring such as seawalls and rocky revetments. As part of that project, the Chilean team surveyed nine sandy beaches along the coasts of Maule and Bíobío in late January, 2010. The earthquake hit in February.

Realizing their unique opportunity, the scientists quickly changed gears and within days were back on the beaches to reassess their study sites in the catastrophe's aftermath. They have returned many times since, diligently documenting the ecological recovery and long-term effects of the earthquake and tsunami on these coastlines, in both natural and human-altered settings.

The magnitude and direction of land-level change brought the greatest impact, drowning beaches especially where the tsunami exacerbated earthquake-induced subsidence –– and widening and flattening beaches where the earthquake brought uplift. The drowned beach areas suffered mortality of intertidal life; the widened beaches quickly saw the return of plants and animals that had vanished due to the effects of coastal armoring.

"With the study in California and our study here, we knew that building coastal defense structures, such as seawalls, decreases beach area, and that a seawall results in the decline of intertidal diversity," said lead author Eduardo Jaramillo, of Universidad Austral de Chile. "But after the earthquake, where significant continental uplift occurred, the beach area that had been lost due to coastal armoring has now been restored. And the re-colonization of the mobile beach fauna was under way just weeks after."

With responses varying so widely depending on land-level changes, mobility of flora and fauna, and shore type, the findings show not only that the interactions of extreme events with armored beaches can produce surprising ecological outcomes –– but also suggest that landscape alteration, including armoring, can leave lasting footprints in coastal ecosystems.

"When someone builds a seawall, not only is beach habitat covered up with the wall itself, but, over time, sand is lost in front of the wall until the beach eventually drowns," Dugan said. "The semi-dry and damp sand zones of the upper and mid intertidal are lost first, leaving only the wet lower beach zones. This causes the beach to lose diversity, including birds, and to lose ecological function. This is an underappreciated human impact on coastlines around the world, and with climate change squeezing beaches further, it's a very serious issue to consider."

Jaramillo elaborated, "This is very important because sandy beaches represent about 80 percent of the open coastlines globally. Also, sandy beaches are very good barriers against the sea level rise we are seeing around the world. It is essential to take care of sandy beaches. They are not only important for recreation, but also for conservation."

The study is said to be the first-ever quantification of earthquake and tsunami effects on sandy beach ecosystems along a tectonically active coastal zone.

Shelly Leachman | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

Scientists create innovative new 'green' concrete using graphene

24.04.2018 | Materials Sciences

BAM@Hannover Messe: innovative 3D printing method for space flight

24.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>