Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Invading species can extinguish native plants despite recent reports

10.01.2013
Ecologists at the University of Toronto and the Swiss Federal Institute of Technology Zurich (ETH Zurich) have found that, given time, invading exotic plants will likely eliminate native plants growing in the wild despite recent reports to the contrary.
A study published in Proceedings of the National Academy of Sciences (PNAS) reports that recent statements that invasive plants are not problematic are often based on incomplete information, with insufficient time having passed to observe the full effect of invasions on native biodiversity.

“The impacts of exotic plant invasions often take much longer to become evident than previously thought,” says Benjamin Gilbert of U of T’s Department of Ecology & Evolutionary Biology (EEB) and lead author of the study. “This delay can create an ‘extinction debt’ in native plant species, meaning that these species are slowly going extinct but the actual extinction event occurs hundreds of years after the initial invasion.”

Much of the debate surrounding the threat posed to biodiversity by the invasions of non-native species is fueled by recent findings that competition from introduced plants has driven remarkably few plant species to extinction. Instead, native plant species in invaded ecosystems are often relegated to patchy, marginal habitats unsuitable to their nonnative competitors.

However, Gilbert and co-author Jonathan Levine of ETH Zurich say that it is uncertain whether the colonization and extinction dynamics of the plants in marginal habitats will allow long-term native persistence.

“Of particular concern is the possibility that short term persistence of native flora in invaded habitats masks eventual extinction,” says Levine.

The researchers conducted their research in a California reserve where much of the remaining native plant diversity exists in marginal areas surrounded by invasive grasses. They performed experiments in the reserve and coupled their results with quantitative models to determine the long term impacts of invasive grasses on native plants.

“Invasion has created isolated ‘islands of native plants’ in a sea of exotics,” says Gilbert. “This has decreased the size of native habitats, which reduces seed production and increases local extinction. It also makes it much harder for native plants to recolonize following a local extinction.”

“Our research also allows us to identify how new habitats for native flora could be created that would prevent extinction from happening. These habitats would still be too marginal for invaders, but placed in such a way as to create 'bridges' to other habitat patches,” says Gilbert.

The findings are reported in the paper “Plant invasions and extinction debts” in PNAS’ Early Edition this week. The research is supported by funding from the Natural Sciences and Engineering Research Council of Canada and the Packard Foundation.

Note to media: Visit www.artsci.utoronto.ca/main/media-releases/invasive-exotic-plants-study for images related to the research study described here.

MEDIA CONTACTS:
Benjamin Gilbert
Department of Ecology and Evolutionary Biology
University of Toronto
416-978-4065 (office)
647-778-0900 (cell)
benjamin.gilbert@utoronto.ca
Sean Bettam
Communications, Faculty of Arts & Science
University of Toronto
416-946-7950
s.bettam@utoronto.ca

Sean Bettam | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>