Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Invading species can extinguish native plants despite recent reports

10.01.2013
Ecologists at the University of Toronto and the Swiss Federal Institute of Technology Zurich (ETH Zurich) have found that, given time, invading exotic plants will likely eliminate native plants growing in the wild despite recent reports to the contrary.
A study published in Proceedings of the National Academy of Sciences (PNAS) reports that recent statements that invasive plants are not problematic are often based on incomplete information, with insufficient time having passed to observe the full effect of invasions on native biodiversity.

“The impacts of exotic plant invasions often take much longer to become evident than previously thought,” says Benjamin Gilbert of U of T’s Department of Ecology & Evolutionary Biology (EEB) and lead author of the study. “This delay can create an ‘extinction debt’ in native plant species, meaning that these species are slowly going extinct but the actual extinction event occurs hundreds of years after the initial invasion.”

Much of the debate surrounding the threat posed to biodiversity by the invasions of non-native species is fueled by recent findings that competition from introduced plants has driven remarkably few plant species to extinction. Instead, native plant species in invaded ecosystems are often relegated to patchy, marginal habitats unsuitable to their nonnative competitors.

However, Gilbert and co-author Jonathan Levine of ETH Zurich say that it is uncertain whether the colonization and extinction dynamics of the plants in marginal habitats will allow long-term native persistence.

“Of particular concern is the possibility that short term persistence of native flora in invaded habitats masks eventual extinction,” says Levine.

The researchers conducted their research in a California reserve where much of the remaining native plant diversity exists in marginal areas surrounded by invasive grasses. They performed experiments in the reserve and coupled their results with quantitative models to determine the long term impacts of invasive grasses on native plants.

“Invasion has created isolated ‘islands of native plants’ in a sea of exotics,” says Gilbert. “This has decreased the size of native habitats, which reduces seed production and increases local extinction. It also makes it much harder for native plants to recolonize following a local extinction.”

“Our research also allows us to identify how new habitats for native flora could be created that would prevent extinction from happening. These habitats would still be too marginal for invaders, but placed in such a way as to create 'bridges' to other habitat patches,” says Gilbert.

The findings are reported in the paper “Plant invasions and extinction debts” in PNAS’ Early Edition this week. The research is supported by funding from the Natural Sciences and Engineering Research Council of Canada and the Packard Foundation.

Note to media: Visit www.artsci.utoronto.ca/main/media-releases/invasive-exotic-plants-study for images related to the research study described here.

MEDIA CONTACTS:
Benjamin Gilbert
Department of Ecology and Evolutionary Biology
University of Toronto
416-978-4065 (office)
647-778-0900 (cell)
benjamin.gilbert@utoronto.ca
Sean Bettam
Communications, Faculty of Arts & Science
University of Toronto
416-946-7950
s.bettam@utoronto.ca

Sean Bettam | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Early organic carbon got deep burial in mantle

25.04.2017 | Earth Sciences

A room with a view - or how cultural differences matter in room size perception

25.04.2017 | Life Sciences

Warm winds: New insight into what weakens Antarctic ice shelves

25.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>