Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improved Near-real-time Tracking of 2010 El Niño Reveals Marine Life Reductions

04.03.2010
Researchers search for answers to warming coastal water, thinning marine populations

The ongoing El Niño of 2010 is affecting north Pacific Ocean ecosystems in ways that could affect the West Coast fishing industry, according to scientists at NOAA and Scripps Institution of Oceanography, UC San Diego.

Researchers with the California Cooperative Oceanic Fisheries Investigations (CalCOFI) at Scripps and NOAA's Southwest Fisheries Science Center report a stronger than normal northward movement of warm water up the Southern California coast, a high sea-level event in January and low abundances of plankton and pelagic fish - all conditions consistent with El Niño.

Sea surface temperatures along the entire West Coast are 0.5 to 1 degree Celsius (0.9 to 1.8 degrees Fahrenheit) warmer than normal and at points off Southern California are as much as 1.6 degrees Celsius (2.9 degrees Fahrenheit) higher than normal. The most unusually high temperatures were mapped around Catalina and San Clemente islands. While strong winter storms caused an increase in coastal sea levels, scientists are investigating whether the higher sea levels are primarily a result of El Niño, a cyclical phenomenon characterized by warming eastern equatorial Pacific Ocean waters.

"Based on our previous experience of El Niño in California, it is likely to reduce ocean production below normal, with possible effects extending to breeding failure of seabirds, and much lower catches in the market squid fishery," said Sam McClatchie, a fisheries oceanographer at NOAA's Southwest Fisheries. "However, predictions are never certain, and CalCOFI and NOAA ocean-observing systems will continue to provide essential monitoring of the situation."

A combination of satellite remote sensing and field measurements is offering scientists a broader view of the evolution of this El Niño that was not available during previous El Niños, which were especially strong in 1982-83 and 1997-98. Internet technology aboard CalCOFI research vessels is delivering that information faster.

"You can post data the same day it's collected," said CalCOFI information manager Jim Wilkinson of Scripps Oceanography. "It used to take six months to work up some of the data and interpret it."

NOAA Southwest Fisheries oceanographer Frank Schwing said scientists' analytical tools provide better ways to assess the strength of anomalies such as warming that are associated with El Niño.

"We're taking a much more ecosystem-based approach to managing the system," said Schwing. "Because we are more on top of the observations, we can give a more timely heads-up to scientists and managers who are interested in the effects of El Niño."

The two research centers use data collected by satellites and buoy-mounted instruments to measure sea surface temperature. CalCOFI researchers embark on quarterly cruises off the California coast to collect vertical temperature profiles in the upper reaches of the water column. They also count eggs of commercially important fishes such as sardines and anchovies as well as measure plankton volumes to estimate the amount of "production" available to marine organisms. NOAA's Advanced Survey Technologies Group assesses fish populations through acoustic surveys. In contrast with the last major El Niño, Scripps now deploys Spray gliders, diving robots that now gather ocean temperature and other data along transects between CalCOFI stations.

The NOAA and CalCOFI scientists have observed a drop in biological abundance, or productivity, that appears to be related to the northward movement of warm water from the equator. The flow arrives in pulsing Kelvin waves that are detected by sea level and altimeter monitors and coastal tidal gauges. The layer of warm water often stifles the upwelling of nutrients from lower ocean depths that sustain larger populations of fishes and invertebrates.

The researchers reported finding fewer hake and anchovy eggs than usual in the most recent CalCOFI surveys. Sanddab and flounder eggs dominated the samples. Most were collected in a small area east of the Channel Islands.

The scientists added that if El Niño conditions continue, they are likely to be characterized by weaker than normal upwelling and lower biological production. El Niño conditions are forecast to persist into spring. If so, greater biological anomalies than have already been observed may develop.

Note to broadcast and cable producers: University of California, San Diego provides an on-campus satellite uplink facility for live or pre-recorded television interviews. Please phone or e-mail the media contact listed above to arrange an interview.

Scripps Institution of Oceanography, at University of California, San Diego, is one of the oldest, largest and most important centers for global science research and education in the world. The National Research Council has ranked Scripps first in faculty quality among oceanography programs nationwide. Now in its second century of discovery, the scientific scope of the institution has grown to include biological, physical, chemical, geological, geophysical and atmospheric studies of the earth as a system. Hundreds of research programs covering a wide range of scientific areas are under way today in 65 countries. The institution has a staff of about 1,300, and annual expenditures of approximately $155 million from federal, state and private sources. Scripps operates one of the largest U.S. academic fleets with four oceanographic research ships and one research platform for worldwide exploration.

Robert Monroe | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>