Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hot microbes cause groundwater cleanup rethink

22.09.2009
CSIRO researchers have discovered that micro-organisms that help break down contaminants under the soil can actually get too hot for their own good.

While investigating ways of cleaning up groundwater contamination, scientists examined how microbes break down contaminants under the soil’s surface and found that subsurface temperatures associated with microbial degradation can become too hot for the microbes to grow and consume the groundwater contaminants.

This can slow down the clean up of the groundwater and even continue the spread of contamination.

The new findings mean that researchers now have to rethink the way groundwater remediation systems are designed.

“Although increasing the flow of air would reduce temperatures and overcome these limitations a fine balance needs to be struck as the injected air can generate hazardous vapours that overwhelm the micro-organisms leading to unwanted atmospheric emissions at the ground surface,” Mr Johnston said.CSIRO Water for a Healthy Country Flagship scientist Mr Colin Johnston, who is based in Perth, Western Australia, said the researchers were investigating how temperatures below the soil’s surface could be used as an indicator of the microbial degradation process associated with biosparging.

Biosparging is a technique that injects air into polluted groundwater to enhance the degradation of contaminants.

The contaminants are ‘food’ to the microbes and the oxygen in the air helps the microbes unlock the energy in the food so that they metabolise and grow, consuming more contaminants and stopping the spread of the contamination.

“Observations of diesel fuel contamination showed that, at 3.5 metres below the ground surface, temperatures reached as high as 47 °C,” Mr Johnston said.

“This is close to the 52 °C maximum temperature tolerated by the community of micro-organisms that naturally live in the soil at this depth and within the range where the growth of the community was suppressed.”

The growth of the soil’s micro-organism community can also be helped by adding nutrients.

However computer modelling confirmed that any attempts to further increase degradation of the contamination through the addition of nutrients had the potential to raise temperatures above the maximum for growth.

“Although increasing the flow of air would reduce temperatures and overcome these limitations a fine balance needs to be struck as the injected air can generate hazardous vapours that overwhelm the micro-organisms leading to unwanted atmospheric emissions at the ground surface,” Mr Johnston said.

“This would be particularly so for highly volatile compounds such as gasoline.

“It appears that prudent manipulation of operating conditions and appropriate timing of nutrient addition may help limit temperature increases.”

Mr Johnston said further research was required to better understand the thermal properties in the subsurface as well as the seasonal effects of rainfall infiltration and surface soil heating.

Anne McKenzie | EurekAlert!
Further information:
http://www.csiro.au

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>