Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hake population has withstood overfishing, thanks to the warming of the sea

24.08.2011
Hake is constantly fished in the waters of the European Atlantic Ocean and, nevertheless, resists stock depletion relatively well. At times nature is capable of correcting the mistakes made by humans.

Ms Nerea Goikoetxea, a researcher at Azti-Tecnalia, has been witness to this. She has investigated the population dynamics of the northern European hake population, observing which environment has favoured the species since the 90s to date: the sea has turned milder, and so larvae have grown better and faster.

So, despite the biomass being less due to fishing, the rate of survival of the larvae has been enhanced, as well as opening up to future generations. Ms Goikoetxea presented her thesis at the University of the Basque Country (UPV/EHU) with the title: Influence of the northeastern Atlantic oceano-meteorological variability on the northern hake (Merluccius merluccius). Analysis of the 1978-2006 period.

As Ms Goikoetxea bore out in her study, the factors related to the population density (fishing and its impact on the stock of hake at the age of fecundity) are obviously important in understanding the evolution of the species. But, equally important as this may be other matters which have nothing to do with density, such as environmental conditions. As is explained in the thesis, what happened after the 90s is a good example of this.

Low biomass, rise in success of recruitment

Ms Goikoetxea has shown that, especially between 1895 and 1990, the adult population of hake (SSB or spawning stock biomass) dropped considerably, probably because of overfishing. If only this factor is taken into account, it would be logical to think that the generational turnover of hake runs a risk every year, but this has not been the case. Although the SSB and the total recruitment (the amount of young hake that survive to the age of fecundity) fell from the 1990`s, the success of recruitment increased. In other words, proportionally speaking, more eggs laid by these generations have survived long enough to become adult hakes. The researcher points to nature: until the 90s, fishing harmed the hake population but, since then, favourable conditions have arisen which have had a greater impact than the negative consequences derived from fishing.

Concretely, Ms Goikoetxea explained that there was a change in the ecological regime on the continental platform in the north-eastern Atlantic Ocean zone, which warmed the waters that are host to the hake of northern Europe. The warming occurred between the end of the 80s and the mid-90s. On the one hand, the phenomenon known as the North Atlantic Oscillation or NAO positive index occurred: low pressures in the area of Iceland dropped notably, as did high pressures in the Azores. Simultaneously, the Gulf Stream grew stronger. All this increased the transport of warm water towards the north east. All this warming and the rise in success of recruitment occurred simultaneously.

The warmer the waters, the faster the egg-laying

Goikoetxea concluded, thus, that warm temperatures can be beneficial for hake, especially in the early stages of their life cycle. On there being a rise in the temperature of the water, the period and space for laying eggs are extended, and so the numbers of surviving individuals are greater. Likewise, as the larvae grow faster in warmer waters, their period of vulnerability is shortened, and it is more feasible to survive. Also, the transport of water in a north-east direction eases and facilitates the route from egg-laying zones to breeding grounds, the hake thus growing in the most appropriate locations for each stage. Therefore, the success of recruitment rises.

In consequence, while reiterating that the quantity of the adult hake population (conditioned by fish catches) may have great bearing on generational turnover, the environmental impact should also be taken into account. Amongst these environmental factors, Ms Goikoetxea makes reference to wind transport, to anomalies in the temperature of the northern hemisphere and to the amount of food available during egg-laying.

About the author

Ms Nerea Goikoetxea Bilbao (Bermeo, 1980) is a Biology graduate and has just finished a European Master’s degree in Marine Environment and Resources. She drew up her thesis under the direction of Mr Xabier Irigoien, coordinator of the Departments of Oceanography, Biology and Ecosystems and Management of Pelagic Resources at Azti-Tecnalia. She defended her PhD at the Department of Zoology and Animal Cell Biology of the Faculty of Science and Technology at the UPV/EHU. Ms Goikoetxea undertook her thesis at Azti-Tecnalia and is currently a researcher there.

Amaia Portugal | EurekAlert!
Further information:
http://www.elhuyar.com

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>