Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetics Provide Evidence for the Movement of Avian Influenza Viruses from Asia to North America via Migratory Birds

29.10.2008
Wild migratory birds may be more important carriers of avian influenza viruses from continent to continent than previously thought, according to new scientific research that has important implications for highly pathogenic avian influenza virus surveillance in North America.

As part of a multi-pronged research effort to understand the role of migratory birds in the transfer of avian influenza viruses between Asia and North America, scientists with the U.S. Geological Survey (USGS), in collaboration with the U.S. Fish and Wildlife Service in Alaska and the University of Tokyo, have found genetic evidence for the movement of Asian forms of avian influenza to Alaska by northern pintail ducks.

In an article published this week in Molecular Ecology, USGS scientists observed that nearly half of the low pathogenic avian influenza viruses found in wild northern pintail ducks in Alaska contained at least one (of eight) gene segments that were more closely related to Asian than to North American strains of avian influenza.

It was a highly pathogenic form of the H5N1 avian influenza virus that spread across Asia to Europe and Africa over the past decade, causing the deaths of 245 people and raising concerns of a possible human pandemic. The role of migratory birds in moving the highly pathogenic virus to other geographic areas has been a subject of debate among scientists. Disagreement has focused on how likely it is for H5N1 to disperse among continents via wild birds.

"Although some previous research has led to speculation that intercontinental transfer of avian influenza viruses from Asia to North America via wild birds is rare, this study challenges that," said Chris Franson, a research wildlife biologist with the USGS National Wildlife Health Center and co-author of the study. Franson added that most of the previous studies examined bird species that are not transcontinental migrants or were from mid-latitude locales in North America, regions far removed from sources of Asian strains of avian influenza.

Scientists with the USGS, in collaboration with the U.S. Fish and Wildlife Service, state agencies, and Alaska native communities, obtained samples from more than 1,400 northern pintails from locations throughout Alaska. Samples containing viruses were then analyzed and compared to virus samples taken from other birds in North America and Eastern Asia where northern pintails are known to winter. Researchers chose northern pintails as the focus of the study because they are fairly common in North America and Asia, they are frequently infected by low pathogenic avian influenza, and they are known to migrate between North America and Asia. None of the samples were found to contain completely Asian-origin viruses and none were highly pathogenic.

"This kind of genetic analysis - using the low pathogenic strains of avian influenza virus commonly found in wild birds - can answer questions not only about the migratory movements of wild birds, but the degree of virus exchange that takes place between continents, provided the right species and geographic locations are sampled," said John Pearce, a research wildlife biologist with the USGS Alaska Science Center and co-author of the study. "Furthermore, this research validates our current surveillance sampling process for highly pathogenic avian influenza in Alaska and demonstrates that genetic analysis can be used as an effective tool to further refine surveillance plans across North America, Pearce added.

Website for USGS northern pintail avian influenza research:
http://alaska.usgs.gov/science/biology/avian_influenza/pintail_movements.html
Implications of the Research:
Migratory bird species, including many waterfowl and shorebirds, that frequently carry low pathogenic avian influenza and migrate between continents may carry Asian strains of the virus along their migratory pathways to North America.
USGS researchers found that nearly half of influenza viruses isolated from northern pintail ducks in Alaska contained at least one of eight virus genes that were more closely related to Asian than North American strains. None of the samples contained completely Asian-origin viruses and none were highly pathogenic forms that have caused deaths of domestic poultry and humans.

The central location of Alaska in relation to Asian and North American migratory flyways may explain the higher frequency of Asian lineages observed in this study in comparison to more southerly locations in North America. Thus, continued surveillance for highly pathogenic viruses via sampling of wild birds in Alaska is warranted.

Future surveillance for avian influenza in wild birds should include the type of genetic analyses used in this study to better understand patterns of migratory connectivity between Asia and North America and virus ecology.

John Pearce | EurekAlert!
Further information:
http://www.usgs.gov/newsroom/
http://www.usgs.gov
http://www.usgs.gov/newsroom/article.asp?ID=2044&from=rss_home

Further reports about: Birds Fish Genetics H5N1 Influenza Migratory USGS Wildlife bird species genetic analysis influenza viruses viruses

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Link Discovered between Immune System, Brain Structure and Memory

26.04.2017 | Life Sciences

New survey hints at exotic origin for the Cold Spot

26.04.2017 | Physics and Astronomy

NASA examines newly formed Tropical Depression 3W in 3-D

26.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>