Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetics Provide Evidence for the Movement of Avian Influenza Viruses from Asia to North America via Migratory Birds

29.10.2008
Wild migratory birds may be more important carriers of avian influenza viruses from continent to continent than previously thought, according to new scientific research that has important implications for highly pathogenic avian influenza virus surveillance in North America.

As part of a multi-pronged research effort to understand the role of migratory birds in the transfer of avian influenza viruses between Asia and North America, scientists with the U.S. Geological Survey (USGS), in collaboration with the U.S. Fish and Wildlife Service in Alaska and the University of Tokyo, have found genetic evidence for the movement of Asian forms of avian influenza to Alaska by northern pintail ducks.

In an article published this week in Molecular Ecology, USGS scientists observed that nearly half of the low pathogenic avian influenza viruses found in wild northern pintail ducks in Alaska contained at least one (of eight) gene segments that were more closely related to Asian than to North American strains of avian influenza.

It was a highly pathogenic form of the H5N1 avian influenza virus that spread across Asia to Europe and Africa over the past decade, causing the deaths of 245 people and raising concerns of a possible human pandemic. The role of migratory birds in moving the highly pathogenic virus to other geographic areas has been a subject of debate among scientists. Disagreement has focused on how likely it is for H5N1 to disperse among continents via wild birds.

"Although some previous research has led to speculation that intercontinental transfer of avian influenza viruses from Asia to North America via wild birds is rare, this study challenges that," said Chris Franson, a research wildlife biologist with the USGS National Wildlife Health Center and co-author of the study. Franson added that most of the previous studies examined bird species that are not transcontinental migrants or were from mid-latitude locales in North America, regions far removed from sources of Asian strains of avian influenza.

Scientists with the USGS, in collaboration with the U.S. Fish and Wildlife Service, state agencies, and Alaska native communities, obtained samples from more than 1,400 northern pintails from locations throughout Alaska. Samples containing viruses were then analyzed and compared to virus samples taken from other birds in North America and Eastern Asia where northern pintails are known to winter. Researchers chose northern pintails as the focus of the study because they are fairly common in North America and Asia, they are frequently infected by low pathogenic avian influenza, and they are known to migrate between North America and Asia. None of the samples were found to contain completely Asian-origin viruses and none were highly pathogenic.

"This kind of genetic analysis - using the low pathogenic strains of avian influenza virus commonly found in wild birds - can answer questions not only about the migratory movements of wild birds, but the degree of virus exchange that takes place between continents, provided the right species and geographic locations are sampled," said John Pearce, a research wildlife biologist with the USGS Alaska Science Center and co-author of the study. "Furthermore, this research validates our current surveillance sampling process for highly pathogenic avian influenza in Alaska and demonstrates that genetic analysis can be used as an effective tool to further refine surveillance plans across North America, Pearce added.

Website for USGS northern pintail avian influenza research:
http://alaska.usgs.gov/science/biology/avian_influenza/pintail_movements.html
Implications of the Research:
Migratory bird species, including many waterfowl and shorebirds, that frequently carry low pathogenic avian influenza and migrate between continents may carry Asian strains of the virus along their migratory pathways to North America.
USGS researchers found that nearly half of influenza viruses isolated from northern pintail ducks in Alaska contained at least one of eight virus genes that were more closely related to Asian than North American strains. None of the samples contained completely Asian-origin viruses and none were highly pathogenic forms that have caused deaths of domestic poultry and humans.

The central location of Alaska in relation to Asian and North American migratory flyways may explain the higher frequency of Asian lineages observed in this study in comparison to more southerly locations in North America. Thus, continued surveillance for highly pathogenic viruses via sampling of wild birds in Alaska is warranted.

Future surveillance for avian influenza in wild birds should include the type of genetic analyses used in this study to better understand patterns of migratory connectivity between Asia and North America and virus ecology.

John Pearce | EurekAlert!
Further information:
http://www.usgs.gov/newsroom/
http://www.usgs.gov
http://www.usgs.gov/newsroom/article.asp?ID=2044&from=rss_home

Further reports about: Birds Fish Genetics H5N1 Influenza Migratory USGS Wildlife bird species genetic analysis influenza viruses viruses

More articles from Ecology, The Environment and Conservation:

nachricht Dune ecosystem modelling
23.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Understanding animal social networks can aid wildlife conservation
23.06.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>