Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Field of the future – ecological experiment simulates conditions in 2100

26.09.2008
A new experiment to find out how British plant ecosystems may be affected by future changes to climate and biodiversity is underway at Imperial College London.

The experiment will simulate predicted future rainfall patterns in a semi-natural grassland at Imperial’s Silwood Park campus in Berkshire, and scientists will assess how differing levels of plant diversity affect the ecosystem’s response to climate stress.

The study will reflect the Intergovernmental Panel on Climate Change’s (IPCC) prediction that southern England will experience up to a 30% decrease in summer rainfall and a 15% increase in winter rainfall, by the year 2100.

The study is led by Dr Sally Power and Dr Pete Manning, and has been set up with funding principally from Imperial’s Grantham Institute for Climate Change and the NERC Centre for Population Biology. The research is being carried out by Grantham Institute PhD student Ellen Fry and a team of researchers. It will focus on how important functions performed by ecosystems, such as water processing, nutrient cycling and carbon storage, are affected when there are significant changes to the patterns of rainfall they receive.

Importantly, however, in a novel approach to the issue, this study will also examine the extent to which climate-driven effects on these key functions are modified by changes in levels of plant biodiversity in the ecosystem. The research team have chosen to include different levels of plant diversity in their study because global biodiversity decline, associated with climate change, pollution, changing land use patterns and other human impacts on the environment is now well documented and is predicted to increase during this century.

Dr Sally Power from Imperial’s Division of Biology said: “Ecosystems will be facing a multitude of challenges in the coming years. Changing rainfall patterns are likely to affect the ability of ecosystems to perform important ecological functions such as nutrient cycling; a key challenge is now to understand the implications of biodiversity loss for ecosystem functioning and the sustainability of these functions in a changing climate.”

The experiment comprises 168 rain shelters, each covering 2.4 m x 2.4 m plots within a grassland ecosystem. The shelters are left on throughout the summer, enabling the scientists to accurately manipulate the amount of rainwater that reaches the plants underneath, with some groups receiving natural levels of rainfall, and others receiving the lower levels of rain predicted for 2100. In the winter the shelters are removed, and the 2100 simulation plots will be given extra water by Miss Fry and her colleagues, to reflect the anticipated rise in winter rainfall.

In addition, the researchers have manipulated the biodiversity of the plants found in each plot to reflect different levels of plant trait diversity within experimental plots. Plant traits that affect ecosystem functions, such as root length, nutrient uptake and photosynthesis rate were measured at the beginning of the experiment for all of the species found at the study site. Species were then categorised into three groups on the basis of measured attributes, with members of each group sharing similar characteristics. The experimental plots were then manipulated by the researchers so that so that either a single trait group, multiple pairs of trait groups, or all three trait groups are present in different plots, reflecting a gradient of increasing diversity.

Dr Pete Manning explains that manipulating the diversity of the plants in this way, using traits to group them together, allows the research team to relate changes in plant diversity to effects on key ecosystem processes particularly in light of changing rainfall patterns:

“We now realise that when it comes to biodiversity, it’s not simply the number of different species living together in a place that’s important, but what those species do in the ecosystem”, he said.

“For example, losing species with bulb-like storage organs and deep roots may make the ecosystem more sensitive to climate change, as these are the species that are most likely to keep performing useful functions, like storing carbon, during periods of drought. This experiment allows us to test these sort of ideas, in a way that hasn’t been possible before. Ultimately, we may be able to identify which species are the most likely to decline under future conditions and whether these declines will affect important ecosystem functions”, he added.

Professor Sir Brian Hoskins, Director of the Grantham Institute for Climate Change at Imperial said: “Because this experiment tackles the issues of summer droughts and winter floods in a full ecosystem context, but one with decreasing plant trait biodiversity all at the same time, means that it promises one of the most realistic pictures to date of how ecosystems in the UK may react to the environmental changes caused by human emissions of greenhouse gases.”

Danielle Reeves | alfa
Further information:
http://www.imperial.ac.uk/climatechange

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>