Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Field of the future – ecological experiment simulates conditions in 2100

26.09.2008
A new experiment to find out how British plant ecosystems may be affected by future changes to climate and biodiversity is underway at Imperial College London.

The experiment will simulate predicted future rainfall patterns in a semi-natural grassland at Imperial’s Silwood Park campus in Berkshire, and scientists will assess how differing levels of plant diversity affect the ecosystem’s response to climate stress.

The study will reflect the Intergovernmental Panel on Climate Change’s (IPCC) prediction that southern England will experience up to a 30% decrease in summer rainfall and a 15% increase in winter rainfall, by the year 2100.

The study is led by Dr Sally Power and Dr Pete Manning, and has been set up with funding principally from Imperial’s Grantham Institute for Climate Change and the NERC Centre for Population Biology. The research is being carried out by Grantham Institute PhD student Ellen Fry and a team of researchers. It will focus on how important functions performed by ecosystems, such as water processing, nutrient cycling and carbon storage, are affected when there are significant changes to the patterns of rainfall they receive.

Importantly, however, in a novel approach to the issue, this study will also examine the extent to which climate-driven effects on these key functions are modified by changes in levels of plant biodiversity in the ecosystem. The research team have chosen to include different levels of plant diversity in their study because global biodiversity decline, associated with climate change, pollution, changing land use patterns and other human impacts on the environment is now well documented and is predicted to increase during this century.

Dr Sally Power from Imperial’s Division of Biology said: “Ecosystems will be facing a multitude of challenges in the coming years. Changing rainfall patterns are likely to affect the ability of ecosystems to perform important ecological functions such as nutrient cycling; a key challenge is now to understand the implications of biodiversity loss for ecosystem functioning and the sustainability of these functions in a changing climate.”

The experiment comprises 168 rain shelters, each covering 2.4 m x 2.4 m plots within a grassland ecosystem. The shelters are left on throughout the summer, enabling the scientists to accurately manipulate the amount of rainwater that reaches the plants underneath, with some groups receiving natural levels of rainfall, and others receiving the lower levels of rain predicted for 2100. In the winter the shelters are removed, and the 2100 simulation plots will be given extra water by Miss Fry and her colleagues, to reflect the anticipated rise in winter rainfall.

In addition, the researchers have manipulated the biodiversity of the plants found in each plot to reflect different levels of plant trait diversity within experimental plots. Plant traits that affect ecosystem functions, such as root length, nutrient uptake and photosynthesis rate were measured at the beginning of the experiment for all of the species found at the study site. Species were then categorised into three groups on the basis of measured attributes, with members of each group sharing similar characteristics. The experimental plots were then manipulated by the researchers so that so that either a single trait group, multiple pairs of trait groups, or all three trait groups are present in different plots, reflecting a gradient of increasing diversity.

Dr Pete Manning explains that manipulating the diversity of the plants in this way, using traits to group them together, allows the research team to relate changes in plant diversity to effects on key ecosystem processes particularly in light of changing rainfall patterns:

“We now realise that when it comes to biodiversity, it’s not simply the number of different species living together in a place that’s important, but what those species do in the ecosystem”, he said.

“For example, losing species with bulb-like storage organs and deep roots may make the ecosystem more sensitive to climate change, as these are the species that are most likely to keep performing useful functions, like storing carbon, during periods of drought. This experiment allows us to test these sort of ideas, in a way that hasn’t been possible before. Ultimately, we may be able to identify which species are the most likely to decline under future conditions and whether these declines will affect important ecosystem functions”, he added.

Professor Sir Brian Hoskins, Director of the Grantham Institute for Climate Change at Imperial said: “Because this experiment tackles the issues of summer droughts and winter floods in a full ecosystem context, but one with decreasing plant trait biodiversity all at the same time, means that it promises one of the most realistic pictures to date of how ecosystems in the UK may react to the environmental changes caused by human emissions of greenhouse gases.”

Danielle Reeves | alfa
Further information:
http://www.imperial.ac.uk/climatechange

More articles from Ecology, The Environment and Conservation:

nachricht Species may appear deceptively resilient to climate change
24.11.2017 | University of California - Davis

nachricht Scientists team up on study to save endangered African penguins
16.11.2017 | Florida Atlantic University

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>