Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fences cause 'ecological meltdown'

04.04.2014

Wildlife fences are constructed for a variety of reasons including to prevent the spread of diseases, protect wildlife from poachers, and to help manage small populations of threatened species.

Human–wildlife conflict is another common reason for building fences: Wildlife can damage valuable livestock, crops, or infrastructure, some species carry diseases of agricultural concern, and a few threaten human lives. At the same time, people kill wild animals for food, trade, or to defend lives or property, and human activities degrade wildlife habitat.


Even well-made and maintained fences may be broken by determined elephants as in this example from Kenya.

Credit: Photograph courtesy of and copyrighted by Lauren Evans

Separating people and wildlife by fencing can appear to be a mutually beneficial way to avoid such detrimental effects. But in a paper in the journal Science, published today, April 4th, 2014, WCS and ZSL scientists review the 'pros and cons' of large scale fencing and argue that fencing should often be a last resort.

Although fencing can have conservation benefits, it also has costs. When areas of contiguous wildlife habitat are converted into islands, the resulting small and isolated populations are prone to extinction, and the resulting loss of predators and other larger-bodied species can affect interactions between species in ways that cause further local extinctions, a process which has been termed "ecological meltdown".

... more about:
»Conservation »Indonesia »VISION »WCS »ZSL »diseases »livestock »species

"In some parts of the world, fencing is part of the culture of wildlife conservation – it's assumed that all wildlife areas have to be fenced. But fencing profoundly alters ecosystems, and can cause some species to disappear. We're asking that conservationists as well as other sectoral interests carefully weigh up the biodiversity costs and benefits of new and existing fences," said ZSL's Rosie Woodroffe, lead author of the study.

In addition to their ecosystem-wide impact, fences do not always achieve their specific aims. Construction of fences to reduce human–wildlife conflict has been successful in some places but the challenges of appropriate fence design, location, construction, and maintenance mean that fences often fail to deliver the anticipated benefits. Ironically, in some places, fences also provide poachers with a ready supply of wire for making snares.

Co-author Simon Hedges of WCS said: "A variety of alternative approaches – including better animal husbandry, community-based crop-guarding, insurance schemes, and wildlife-sensitive land-use planning – can be used to mitigate conflicts between people and wildlife without the need for fencing. WCS projects working with local people and government agencies have shown that human–elephant conflict can be dramatically reduced without using fences in countries as different as Indonesia and Tanzania."

Co-author Sarah Durant of ZSL's said, "An increased awareness of the damage caused by fencing is leading to movements to remove fences instead of building more. Increasingly, fencing is seen as backwards step in conservation."

The desire to separate livestock from wildlife in order to create zones free from diseases such as foot and mouth has resulted in extensive fencing systems, particularly in southern Africa. Some of these fences have had devastating environmental effects. Fortunately, it is increasingly recognized that a combination of improved testing, vaccination, and standardized approaches to meat preparation can prevent spread of diseases without the need to separate cattle from wildlife by fencing.

The authors conclude that as climate change increases the importance of facilitating wildlife mobility and maintaining landscape connectivity, fence removal may become an important form of climate change preparedness, and so fencing of wildlife should be avoided whenever possible.

###

Wildlife Conservation Society (WCS)

MISSION: WCS saves wildlife and wild places worldwide through science, conservation action, education, and inspiring people to value nature.

VISION: WCS envisions a world where wildlife thrives in healthy lands and seas, valued by societies that embrace and benefit from the diversity and integrity of life on earth. To achieve our mission, WCS, based at the Bronx Zoo, harnesses the power of its Global Conservation Program in more than 60 nations and in all the world's oceans and its five wildlife parks in New York City, visited by 4 million people annually. WCS combines its expertise in the field, zoos, and aquarium to achieve its conservation mission.

Visit: http://www.wcs.org; http://www.facebook.com/TheWCS; http://www.youtube.com/user/WCSMedia

Follow: @thewcs.

Stephen Sautner | EurekAlert!
Further information:
http://www.wcs.org

Further reports about: Conservation Indonesia VISION WCS ZSL diseases livestock species

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>