Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Expansion of forests in the European Arctic could result in the release of carbon dioxide

18.06.2012
Carbon stored in Arctic tundra could be released into the atmosphere by new trees growing in the warmer region, exacerbating climate change, scientists have revealed.

The Arctic is getting greener as plant growth increases in response to a warmer climate. This greater plant growth means more carbon is stored in the increasing biomass, so it was previously thought the greening would result in more carbon dioxide being taken up from the atmosphere, thus helping to reduce the rate of global warming.

However, research published in Nature Climate Change, shows that, by stimulating decomposition rates in soils, the expansion of forest into tundra in arctic Sweden could result in the release of carbon dioxide to the atmosphere.

Dr Iain Hartley now based in Geography at the University of Exeter, and lead author of the paper, said: "Determining directly how carbon storage is changing in high-latitude ecosystems is very difficult because the majority of the carbon present is stored below ground in the soils. Our work indicates that greater plant biomass may not always translate into greater carbon storage at the ecosystem level.

"We need to better understand how the anticipated changes in the distribution of different plant communities in the Arctic affects the decomposition of the large carbon stocks in tundra soils if we are to be able to predict how arctic greening will affect carbon dioxide uptake or release in the future."

By measuring carbon stocks in vegetation and soils between tundra and neighbouring birch forest, it was shown that compared to tundra, the two-fold greater carbon storage in plant biomass in the forest was more than outweighed by the smaller carbon stocks in forest soils.

Furthermore, using a novel methodology based on measuring the radiocarbon content of the carbon dioxide being released, the researchers found that the birch trees appeared to be stimulating the decomposition of soil organic matter. Thus, the research was able to identify a mechanism by which the birch trees can contribute directly to reducing carbon storage in soils.

"Dr Gareth Phoenix, of the University of Sheffield's Department Animal and Plant Sciences, who collaborated on the research, added:

"It shows that the encroachment of trees onto Arctic tundra caused by the warming may cause large release of carbon to the atmosphere, which would be bad for global warming.

"This is because tundra soil contains a lot of stored organic matter, due to slow decomposition, but the trees stimulate the decomposition of this material. So, where before we thought trees moving onto tundra would increase carbon storage it seems the opposite may be true. So, more bad news for climate change."

The results of the study are in sharp contrast to the predictions of models which expect total carbon storage to increase with the greater plant growth. Rather, this research suggests that colonisation by productive, high-biomass, plant communities in the Arctic may not always result in greater capture of carbon dioxide, but instead net losses of carbon are possible if the decomposition of the large carbon stocks in Arctic soils are stimulated. This is important as Arctic soils currently store more carbon than is present in the atmosphere as carbon dioxide and thus have considerable potential to affect rates of climate change. It is yet to be seen whether this observed pattern is confined to certain soil conditions and colonising tree species, or whether the carbon stocks in the soils of other arctic or alpine ecosystems may be vulnerable to colonisation by new plant communities as the climate continues to warm.

The research took place within the Natural Environment Research Council (NERC)-funded Arctic Biosphere Atmosphere Coupling at Multiple Scales project (ABACUS; www.abacus-ipy.org) which was led by the University of Edinburgh. This particular study was carried out by a team from the University of Exeter, University of Stirling, NERC Radiocarbon Facility, James Hutton Institute (Aberdeen), the University of Sheffield, and Heriot-Watt University.

About the University of Exeter

The University of Exeter is a leading UK university and in the top one percent of institutions globally. It combines world-class research with very high levels of student satisfaction. Exeter is ranked 9th in The Sunday Times University Guide, 10th in the UK in The Times Good University Guide 2012 and 10th in the Guardian University Guide. In the 2008 Research Assessment Exercise (RAE) 90% of the University's research was rated as being at internationally recognised levels and 16 of its 31 subjects are ranked in the top 10, with 27 subjects ranked in the top 20.

The University has over 18,000 students and is developing its campuses in Exeter and Cornwall with almost £350 million worth of new facilities due for completion in 2012. It has accepted an invitation to join the Russell Group from 1 August 2012. www.exeter.ac.uk

For further information:
Press Office
University of Exeter
+44 (0)1392 722405
+44 (0)7738 493280
pressoffice@exeter.ac.uk
About NERC
The Natural Environment Research Council (NERC) is the UK's main agency for funding and managing world-class research, training and knowledge exchange in the environmental sciences. It coordinates some of the world's most exciting research projects, tackling major issues such as climate change, food security, environmental influences on human health, the genetic make-up of life on earth, and much more. NERC receives around £300 million a year from the government's science budget, which it uses to fund research and training in universities and its own research centres. www.nerc.ac.uk

Liz French | EurekAlert!
Further information:
http://www.exeter.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>