Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Expansion of forests in the European Arctic could result in the release of carbon dioxide

18.06.2012
Carbon stored in Arctic tundra could be released into the atmosphere by new trees growing in the warmer region, exacerbating climate change, scientists have revealed.

The Arctic is getting greener as plant growth increases in response to a warmer climate. This greater plant growth means more carbon is stored in the increasing biomass, so it was previously thought the greening would result in more carbon dioxide being taken up from the atmosphere, thus helping to reduce the rate of global warming.

However, research published in Nature Climate Change, shows that, by stimulating decomposition rates in soils, the expansion of forest into tundra in arctic Sweden could result in the release of carbon dioxide to the atmosphere.

Dr Iain Hartley now based in Geography at the University of Exeter, and lead author of the paper, said: "Determining directly how carbon storage is changing in high-latitude ecosystems is very difficult because the majority of the carbon present is stored below ground in the soils. Our work indicates that greater plant biomass may not always translate into greater carbon storage at the ecosystem level.

"We need to better understand how the anticipated changes in the distribution of different plant communities in the Arctic affects the decomposition of the large carbon stocks in tundra soils if we are to be able to predict how arctic greening will affect carbon dioxide uptake or release in the future."

By measuring carbon stocks in vegetation and soils between tundra and neighbouring birch forest, it was shown that compared to tundra, the two-fold greater carbon storage in plant biomass in the forest was more than outweighed by the smaller carbon stocks in forest soils.

Furthermore, using a novel methodology based on measuring the radiocarbon content of the carbon dioxide being released, the researchers found that the birch trees appeared to be stimulating the decomposition of soil organic matter. Thus, the research was able to identify a mechanism by which the birch trees can contribute directly to reducing carbon storage in soils.

"Dr Gareth Phoenix, of the University of Sheffield's Department Animal and Plant Sciences, who collaborated on the research, added:

"It shows that the encroachment of trees onto Arctic tundra caused by the warming may cause large release of carbon to the atmosphere, which would be bad for global warming.

"This is because tundra soil contains a lot of stored organic matter, due to slow decomposition, but the trees stimulate the decomposition of this material. So, where before we thought trees moving onto tundra would increase carbon storage it seems the opposite may be true. So, more bad news for climate change."

The results of the study are in sharp contrast to the predictions of models which expect total carbon storage to increase with the greater plant growth. Rather, this research suggests that colonisation by productive, high-biomass, plant communities in the Arctic may not always result in greater capture of carbon dioxide, but instead net losses of carbon are possible if the decomposition of the large carbon stocks in Arctic soils are stimulated. This is important as Arctic soils currently store more carbon than is present in the atmosphere as carbon dioxide and thus have considerable potential to affect rates of climate change. It is yet to be seen whether this observed pattern is confined to certain soil conditions and colonising tree species, or whether the carbon stocks in the soils of other arctic or alpine ecosystems may be vulnerable to colonisation by new plant communities as the climate continues to warm.

The research took place within the Natural Environment Research Council (NERC)-funded Arctic Biosphere Atmosphere Coupling at Multiple Scales project (ABACUS; www.abacus-ipy.org) which was led by the University of Edinburgh. This particular study was carried out by a team from the University of Exeter, University of Stirling, NERC Radiocarbon Facility, James Hutton Institute (Aberdeen), the University of Sheffield, and Heriot-Watt University.

About the University of Exeter

The University of Exeter is a leading UK university and in the top one percent of institutions globally. It combines world-class research with very high levels of student satisfaction. Exeter is ranked 9th in The Sunday Times University Guide, 10th in the UK in The Times Good University Guide 2012 and 10th in the Guardian University Guide. In the 2008 Research Assessment Exercise (RAE) 90% of the University's research was rated as being at internationally recognised levels and 16 of its 31 subjects are ranked in the top 10, with 27 subjects ranked in the top 20.

The University has over 18,000 students and is developing its campuses in Exeter and Cornwall with almost £350 million worth of new facilities due for completion in 2012. It has accepted an invitation to join the Russell Group from 1 August 2012. www.exeter.ac.uk

For further information:
Press Office
University of Exeter
+44 (0)1392 722405
+44 (0)7738 493280
pressoffice@exeter.ac.uk
About NERC
The Natural Environment Research Council (NERC) is the UK's main agency for funding and managing world-class research, training and knowledge exchange in the environmental sciences. It coordinates some of the world's most exciting research projects, tackling major issues such as climate change, food security, environmental influences on human health, the genetic make-up of life on earth, and much more. NERC receives around £300 million a year from the government's science budget, which it uses to fund research and training in universities and its own research centres. www.nerc.ac.uk

Liz French | EurekAlert!
Further information:
http://www.exeter.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

nachricht Species Richness – a false friend? Scientists want to improve biodiversity assessments
01.08.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>