Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Eradicating invasive species sometimes threatens endangered ones

02.06.2014

What should resource managers do when the eradication of an invasive species threatens an endangered one?

In results of a study published this week in the journal Science, researchers at the University of California, Davis, examine one such conundrum now taking place in San Francisco Bay. The study was led by UC Davis researcher Adam Lampert.


Endangered California Clapper Rail near invasive Spartina along San Francisco Bay.

Credit: Robert Clark

"This work advances a framework for cost-effective management solutions to the conflict between removing invasive species and conserving biodiversity," said Alan Tessier, acting deputy division director in the National Science Foundation's (NSF) Directorate for Biological Sciences, which supported the research through NSF's Dynamics of Coupled Natural and Human Systems (CNH) Program.

CNH is also co-funded by NSF's Directorates for Geosciences and Social, Behavioral & Economic Sciences.

... more about:
»Geosciences »Human »NSF »Social »Spartina »grants »species »specific

"The project exemplifies the goals of the CNH program," says Tessier, "which are to advance the understanding of complex systems involving humans and nature."

The California Clapper Rail--a bird found only in San Francisco Bay--depends on an invasive salt marsh cordgrass, hybrid Spartina, as nesting habitat.

Its native habitat has slowly vanished over recent decades, largely due to urban development and invasion by Spartina.

Study results show that, rather than moving as fast as possible with eradication and restoration plans, the best approach is to slow down the eradication of the invasive species until restoration or natural recovery of the system provides appropriate habitat for the endangered species.

"Just thinking from a single-species standpoint doesn't work," said paper co-author and UC-Davis environmental scientist Alan Hastings.

"The whole management system needs to take longer, and you need to have much more flexibility in the timing of budget expenditures over a longer time-frame."

The scientists combined biological and economic data on Spartina and on the Clapper Rail to develop a modeling framework to balance conflicting management goals, including endangered species recovery and invasive species restoration, given fiscal limitations.

While more threatened and endangered species are becoming dependent on invasive species for habitat and food, examples of the study's specific conflict are relatively rare--for now.

Another case where the eradication of an invasive species threatened to compromise the recovery of an endangered plant or animal is in the southwestern United States, where an effort to eradicate Tamarisk was cancelled because the invasive tree provides nesting habitat for the endangered Southwestern Willow Flycatcher.

"As eradication programs increase in number, we expect this will be a more common conflict in the future," said paper co-author and UC Davis scientist Ted Grosholz.

Other co-authors include scientists James Sanchirico of UC Davis and Sunny Jardine of the University of Delaware.

Media Contacts
Cheryl Dybas, NSF, (703) 292-7734, cdybas@nsf.gov
Kat Kerlin, UCDavis, (530) 752-7704, kekerlin@ucdavis.edu

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2014, its budget is $7.2 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives about 50,000 competitive requests for funding, and makes about 11,500 new funding awards. NSF also awards about $593 million in professional and service contracts yearly.

Cheryl Dybas | Eurek Alert!
Further information:
http://nsf.gov/news/news_summ.jsp?cntn_id=131478&org=NSF&from=news

Further reports about: Geosciences Human NSF Social Spartina grants species specific

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>