Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Energy from microbes for drying sewage sludge

13.08.2012
A new biodrying process from Siemens quickly converts sewage sludge into a usable form while saving energy.

When dried with the new process, sludge from wastewater treatment can be used as fertilizer, dumped in landfills or incinerated. Unlike thermal drying processes, the new technique, known as "mechanically enhanced biodrying" or MEB, does not require any outside source of heat.



Instead, it uses the energy produced by microbes in the sludge. The operational costs are therefore 30 percent lower compared to thermal drying processes.

The first use of the technique in a large wastewater treatment plant will occur in the Chinese city of Shenyang. Beginning in the fall of 2012, the plant will dry 1,000 metric tons of wet sludge per day. It will be the largest sewage sludge treatment plant in the world that uses a non-thermal technique.

Wastewater treatment gives rise to large quantities of runny sludge that contains a low proportion of solid matter. The water usually has to be drained from this sludge before it can be used, dumped in landfills or incinerated, and this is often accomplished via pressing. A solids content of approximately 20 percent can be achieved this way. In some countries this semisolid sludge is spread on fields as fertilizer or dumped in landfills.

In some countries, however, a solids content of at least 60 percent is mandated for these purposes, and this was recently prescribed by law in China as well. In order to attain this high percentage of solid matter, the sludge must be dried. This can be accomplished very rapidly with thermal processes, which demand a great deal of energy. Alternatively, the sludge can be dried with help from the sun, but this can take up to two months.

The Siemens solution increases the solids content of the sewage sludge from 20 to 65 percent within about 22 days; after that, the resulting product can be used as fertilizer or fuel, or it can be disposed of in landfills. The heat required for the drying is produced by biological processes. Microbes break down nutrients in the sludge and generate heat in the process.

The only other type of energy needed is mechanical energy to aerate and mix the sludge in order to keep the biological processes going. A six-month pilot test at a composting plant in the town of Merrimack in the U.S. state of New Hampshire has shown that this technique works even at ambient temperatures as low as minus ten degrees Celsius.

The sewage sludge is automatically aerated and mixed in a controlled process. The system is enclosed, so that any odors can be trapped with a biofilter. The new process is particularly well suited to developing countries where energy is scarce but an abundance of land is available.

Dr. Norbert Aschenbrenner | Siemens InnovationNews
Further information:
http://www.siemens.com/innovationnews

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>