Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Endangered Gourmet Sea Snail Could be Doomed by Increasing Ocean Acidity

26.05.2011
Increasing levels of ocean acidity could spell doom for British Columbia's already beleaguered northern abalone, according to the first study to provide direct experimental evidence that changing sea water chemistry is negatively affecting an endangered species.

The northern abalone--prized as a gourmet delicacy--has a range that extents along the North American west coast from Baja California to Alaska. Even though British Columbia’s northern abalone commercial fisheries where closed in 1990 to protect dwindling populations, the species has continued to struggle, largely due to poaching.

To better understand the impact climate change — and specifically, increasing ocean acidity — has on this endangered species, UBC researchers exposed northern abalone larvae to water containing increased levels of CO2. Increases from 400 to 1,800 parts per million killed 40 per cent of larvae, decreased the size of larvae that did survive, and increased the rate of shell abnormalities.

"This is quite bad news, not only in terms of the endangered populations of abalone in the wild, but also the impact it might have on the prospects for aquaculture and coastal economics," says Christopher Harley, Associate Professor with the Department of Zoology and one of the authors of the study.

"And because the species is already thought to be limited by reproductive output and recruitment, these effects are likely to scale up to the population level, creating greater limits on population growth."

Average CO2 levels in the open ocean hover at 380 parts per million, a number which is excepted to increase slowly over the next century.

What concerns the researchers are the much higher spikes in dissolved CO2 that are already being observed along the BC coast, particularly in late spring and early summer when northern abalone populations are spawning.

The findings were published in the latest issue of the Journal of Experimental Marine Biology and Ecology.

"While we’re looking at a single species that is culturally important as a source of food and artistic inspiration for many coastal Pacific Northwest First Nations, this information may have implications for other abalone species in other parts of the world," says Ryan Crim, lead author on the paper who conducted the research while a graduate student with the UBC Department of Zoology.

Other species of abalone are farmed around the world, principally in China, Taiwan, Japan and Korea. The black, white and pink abalone are also endangered on the west coast--red abalone are still an economically viable food species.

The study was funded by the Natural Sciences and Engineering Research Council of Canada and conducted in collaboration with the Bamfield-Huu-ay-aht Community Abalone Project, a small abalone hatchery in Bamfield which has subsequently gone out of business. The dual mission of the hatchery was to produce cultured abalone for high end restaurants, and to restore endangered abalone by culturing and releasing larvae and juveniles to the wild.

Harley and Crim will continue to work with the aquaculture industry to study the effects of acidification on oysters and other shellfish.

Journal of Experimental Marine Biology and Ecology
www.sciencedirect.com/science/article/pii/S0022098111000499

Christopher Harley | EurekAlert!
Further information:
http://www.ubc.ca

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>