Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CO2 effects on plants increases global warming

04.05.2010
Trees and other plants help keep the planet cool, but rising levels of carbon dioxide in the atmosphere are turning down this global air conditioner.

According to a new study by researchers at the Carnegie Institution for Science, in some regions more than a quarter of the warming from increased carbon dioxide is due to its direct impact on vegetation.

This warming is in addition to carbon dioxide's better-known effect as a heat-trapping greenhouse gas. For scientists trying to predict global climate change in the coming century, the study underscores the importance of including plants in their climate models.

"Plants have a very complex and diverse influence on the climate system," says study co-author Ken Caldeira of Carnegie's Department of Global Ecology. "Plants take carbon dioxide out of the atmosphere, but they also have other effects, such as changing the amount of evaporation from the land surface. It's impossible to make good climate predictions without taking all of these factors into account."

Plants give off water through tiny pores in their leaves, a process called evapotranspiration that cools the plant, just as perspiration cools our bodies. On a hot day, a tree can release tens of gallons of water into the air, acting as a natural air conditioner for its surroundings. The plants absorb carbon dioxide for photosynthesis through the same pores (called stomata). But when carbon dioxide levels are high, the leaf pores shrink. This causes less water to be released, diminishing the tree's cooling power.

The warming effects of carbon dioxide as a greenhouse gas have been known for a long time, says Caldeira. But he and fellow Carnegie scientist Long Cao were concerned that it is not as widely recognized that carbon dioxide also warms our planet by its direct effects on plants. Previous work by Carnegie's Chris Field and Joe Berry had indicated that the effects were important. "There is no longer any doubt that carbon dioxide decreases evaporative cooling by plants and that this decreased cooling adds to global warming," says Cao. "This effect would cause significant warming even if carbon dioxide were not a greenhouse gas."

In their model, the researchers doubled the concentration of atmospheric carbon dioxide and recorded the magnitude and geographic pattern of warming from different factors. They found that, averaged over the entire globe, the evapotranspiration effects of plants account for 16% of warming of the land surface, with greenhouse effects accounting for the rest. But in some regions, such as parts of North America and eastern Asia, it can be more than 25% of the total warming. "If we think of a doubling of carbon dioxide as causing about four degrees of warming, in many places three of those degrees are coming from the effect of carbon dioxide in the atmosphere, and one is coming from the direct effect of carbon dioxide on plants."

The researchers also found that their model predicted that high carbon dioxide will increase the runoff from the land surface in most areas, because more water from precipitation bypasses the plant cooling system and flows directly to rivers and streams. Earlier models based on greenhouse effects of carbon dioxide had also predicted higher runoff, but the new research predicts that changes in evapotranspiration due to high carbon dioxide could have an even stronger impact on water resources than those models predict.

"These results really show that how plants respond to carbon dioxide is very important for making good climate predictions," says Caldeira. "So if we want to improve climate predictions, we need to improve the representation of land plants in the climate models. More broadly, it shows that the kind of vegetation that's on the surface of our planet and what that vegetation is doing is very important in determining our climate. We need to take great care in considering what kind of changes we make to forests and other ecosystems, because they are likely to have important climate consequences."

The study is published in the May 3-7 online edition of the Proceedings of the National Academy of Sciences.

The Carnegie Institution (www.carnegiescience.edu) has been a pioneering force in basic scientific research since 1902. It is a private, nonprofit organization with six research departments throughout the U.S. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science. The Department of Global Ecology, located in Stanford, California, was established in 2002 to help build the scientific foundations for a sustainable future. Its scientists conduct basic research on a wide range of large-scale environmental issues, including climate change, ocean acidification, biological invasions, and changes in biodiversity.

Ken Caldeira | EurekAlert!
Further information:
http://www.ciw.edu
http://www.carnegiescience.edu

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>