Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


E-waste trade ban won't end environmental threat

Crude recycling methods used in developing countries contaminate air, water and soil

A proposal under debate in the U.S. Congress to ban the export of electronics waste would likely make a growing global environmental problem even worse, say authors of an article from the journal Environmental Science and Technology appearing online today.

The authors call into question conventional thinking that trade bans can prevent "backyard recycling" of electronics waste – primarily old and obsolete computers – in developing countries.

Primitive recycling processes used in these countries are dispersing materials and pollutants that are contaminating air, water and soil.

"Trade bans will become increasingly irrelevant in solving the problem,'' says Eric Williams, one of the authors of the article, which offers alternative ways to address the problem.

Williams is an assistant professor at Arizona State University with a joint appointment in the School of Sustainable Engineering and the Built Environment, a part of the Ira A. Fulton Schools of Engineering and the School of Sustainability.

Electronics waste – or e-waste – is often exported from the United States and other developed nations to regions in China, India, Thailand and less developed countries where recycling is done in a crude fashion.

To recover copper from e-waste, for instance, wires are pulled out, piled up and burned to remove insulation covering the copper. This emits dioxins and other pollutants.

Toxic cyanide and acids used to remove gold from circuit boards of junked computers also are released into the environment.

With the number of junked computers expected to triple in the next 15 years, the authors say, the problem will grow much worse if an effective remedy is not put in place in the near future.

The main approach to solving the backyard recycling problem has been to ban trade in e-waste. Some countries have officially banned e-waste imports, but in some cases, as in China, such legislation has pushed the trade to the black market.

Congress is debating House Resolution 2595, which would ban the export of e-waste from the United States.

"The underlying assumption of this bill and other trade bans is that most e-waste comes from outside developing nations, and that stopping trade with developed countries would cut off the supply of e-waste and stop backyard recycling," Williams says.

But authors of the Environmental Science and Technology article forecast that the developing world will generate more waste computers than the developed countries as soon as 2017, and that by 2025 the developing world will generate twice the amount of waste computers as what will come from developed nations.

"Rapid economic and population growth in developing countries is driving an increase in computer use in these parts of the world that is outpacing the implementation of modern and environment-friendly recycling systems," Williams says. " So without action, backyard recycling is certain to increase."

But he and his co-authors say even a complete global ban on trade in e-waste cannot solve the problem because it covers only a diminishing percentage of the overall supply of e-waste. They argue for direct action to reduce the harmful environmental impacts of backyard recycling.

One proposal is to pay backyard recyclers not to recycle.

"The idea is to let people first repair and reuse equipment, and only intervene to remove materials and components that would be environmentally hazardous when e-waste would be recycled using crude methods," Williams says. "Such a system looks to be an inexpensive way to maintain jobs in recycling operations and maintain access to used computers while protecting the environment."

Williams' co-authors are:

Jinglei Yu, and Meiting Ju,, Department of Environmental Science and Engineering, Nankai University, Tianjin, China,

Yan Yang, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Ariz.

The article can be found online at:

Eric Williams,
Assistant Professor
School of Sustainable Engineering and the Built Environment
Joe Kullman,
(480) 965-8122 direct line
(480) 773-1364 mobile
Ira A. Fulton Schools of Engineering
Arizona State University
Tempe, Arizona USA

Joe Kullman | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

First-time reconstruction of infectious bat influenza viruses

25.10.2016 | Life Sciences

Novel method to benchmark and improve the performance of protein measumeasurement techniques

25.10.2016 | Life Sciences

Amazon rain helps make more rain

25.10.2016 | Life Sciences

More VideoLinks >>>