Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

E-waste trade ban won't end environmental threat

22.03.2010
Crude recycling methods used in developing countries contaminate air, water and soil

A proposal under debate in the U.S. Congress to ban the export of electronics waste would likely make a growing global environmental problem even worse, say authors of an article from the journal Environmental Science and Technology appearing online today.

The authors call into question conventional thinking that trade bans can prevent "backyard recycling" of electronics waste – primarily old and obsolete computers – in developing countries.

Primitive recycling processes used in these countries are dispersing materials and pollutants that are contaminating air, water and soil.

"Trade bans will become increasingly irrelevant in solving the problem,'' says Eric Williams, one of the authors of the article, which offers alternative ways to address the problem.

Williams is an assistant professor at Arizona State University with a joint appointment in the School of Sustainable Engineering and the Built Environment, a part of the Ira A. Fulton Schools of Engineering and the School of Sustainability.

Electronics waste – or e-waste – is often exported from the United States and other developed nations to regions in China, India, Thailand and less developed countries where recycling is done in a crude fashion.

To recover copper from e-waste, for instance, wires are pulled out, piled up and burned to remove insulation covering the copper. This emits dioxins and other pollutants.

Toxic cyanide and acids used to remove gold from circuit boards of junked computers also are released into the environment.

With the number of junked computers expected to triple in the next 15 years, the authors say, the problem will grow much worse if an effective remedy is not put in place in the near future.

The main approach to solving the backyard recycling problem has been to ban trade in e-waste. Some countries have officially banned e-waste imports, but in some cases, as in China, such legislation has pushed the trade to the black market.

Congress is debating House Resolution 2595, which would ban the export of e-waste from the United States.

"The underlying assumption of this bill and other trade bans is that most e-waste comes from outside developing nations, and that stopping trade with developed countries would cut off the supply of e-waste and stop backyard recycling," Williams says.

But authors of the Environmental Science and Technology article forecast that the developing world will generate more waste computers than the developed countries as soon as 2017, and that by 2025 the developing world will generate twice the amount of waste computers as what will come from developed nations.

"Rapid economic and population growth in developing countries is driving an increase in computer use in these parts of the world that is outpacing the implementation of modern and environment-friendly recycling systems," Williams says. " So without action, backyard recycling is certain to increase."

But he and his co-authors say even a complete global ban on trade in e-waste cannot solve the problem because it covers only a diminishing percentage of the overall supply of e-waste. They argue for direct action to reduce the harmful environmental impacts of backyard recycling.

One proposal is to pay backyard recyclers not to recycle.

"The idea is to let people first repair and reuse equipment, and only intervene to remove materials and components that would be environmentally hazardous when e-waste would be recycled using crude methods," Williams says. "Such a system looks to be an inexpensive way to maintain jobs in recycling operations and maintain access to used computers while protecting the environment."

Williams' co-authors are:

Jinglei Yu, yujingleink@gmail.com and Meiting Ju, jumeit@nankai.edu.cn, Department of Environmental Science and Engineering, Nankai University, Tianjin, China,

Yan Yang, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Ariz. Yan.Yang.1@asu.edu

The article can be found online at: http://dx.doi.org/10.1021/es903350q

SOURCE:
Eric Williams, ericwilliams@asu.edu
Assistant Professor
School of Sustainable Engineering and the Built Environment
(480)727-6259
MEDIA CONTACT:
Joe Kullman, joe.kullman@asu.edu
(480) 965-8122 direct line
(480) 773-1364 mobile
Ira A. Fulton Schools of Engineering
Arizona State University
Tempe, Arizona USA
http://engineering.asu.edu/

Joe Kullman | EurekAlert!
Further information:
http://www.asu.edu
http://engineering.asu.edu/

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>