Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CO2 drop and global cooling caused Antarctic glacier to form

27.02.2009
Global climate rapidly shifted from a relatively ice-free world to one with massive ice sheets on Antarctica about 34 million years ago. What happened? What changed?

A team of scientists led by Yale geologists offers a new perspective on the nature of changing climatic conditions across this greenhouse-to-icehouse transition—one that refutes earlier theories and has important implications for predicting future climate changes.

Detailed in the February 27 issue of Science, their data disproves a long-held idea that massive ice growth in the Antarctic was accompanied by little to no global temperature change.

This report shows that before the Southern Hemisphere ice expansion, high-latitude temperatures were at least 10°C (about 18˚F) warmer than previously estimated and that there was a 5˚C - 10˚C drop in surface-water temperature during the climate transition.

"Previous reconstructions gave no evidence of high-latitude cooling," according to senior author Mark Pagani, professor of geology and geophysics at Yale. "Our data demonstrate a clear temperature drop in both hemispheres during this time."

Their conclusions are based on sea-surface "temperature proxies" – calculations of temperature based on the distribution of specific organic molecules from ancient plankton that only lived at certain temperatures and were later preserved in ocean sediments. These molecules were assayed in ocean cores collected by the Integrated Ocean Drilling Program (IODP) and earlier marine programs that study Earth history by coring deep-ocean sediments and crust around the world.

"Temperatures in some regions, just before the Antarctic glaciers formed, were surprisingly higher than current climate models predicted, suggesting that these models underestimate high-latitude warming under high CO2 conditions," said lead author Zhonghui Liu, Pagani's postdoctoral associate who is now an assistant professor at the University of Hong Kong. Further, he said, the substantial cooling that occurred in both Northern and Southern high latitudes suggests that a decline in CO2 level, rather than a localized change of ocean circulation drove the climate transition.

The ice formed over Antarctica in about 100,000 years, which is an "overnight" shift in geological terms. "Just over thirty-five million years ago, 'poof,' there was an ice sheet where there had been subtropical temperatures before," said Co-author Matthew Huber of Purdue University.

Another theory refuted by this study is the notion that ice-expansion also occurred in the Northern Hemisphere during this time — a supposition poorly supported by physical evidence of glacier formation in that region, say the Yale scientists.

There are about 70 meters of vertical sea level rise represented in the ice sheets of Antarctica. And, there are many questions regarding the glacier's stability, the temperature thresholds that would cause radical glacier melting, and the rate at which it would change, according to Pagani. "Our findings point to the difficulty of modeling accurate temperatures under higher CO2 in this critical region."

Janet Rettig Emanuel | EurekAlert!
Further information:
http://www.yale.edu
http://www.geology.yale.edu/
http://earth.geology.yale.edu/people/moreinfo.cgi?netid=mp364

More articles from Ecology, The Environment and Conservation:

nachricht Scientists on the road to discovering impact of urban road dust
18.01.2018 | University of Alberta

nachricht Gran Chaco: Biodiversity at High Risk
17.01.2018 | Humboldt-Universität zu Berlin

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>