Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dried Mushrooms Slow Climate Warming in Northern Forests

03.11.2008
The fight against climate warming has an unexpected ally in mushrooms growing in dry spruce forests covering Alaska, Canada, Scandinavia and other northern regions, a new University of California, Irvine study finds.

When soil in these forests is warmed, fungi that feed on dead plant material dry out and produce significantly less climate-warming carbon dioxide than fungi in cooler, wetter soil.

This came as a surprise to scientists, who expected warmer soil to emit larger amounts of carbon dioxide because extreme cold is believed to slow down the process by which fungi convert soil carbon into carbon dioxide.

Knowing how forests cycle carbon is crucial to accurately predicting global climate warming, which in turn guides public policy to curb greenhouse gas emissions. This is especially important in northern forests, which contain an estimated 30 percent of the Earth’s soil carbon, equivalent to the amount of atmospheric carbon.

“We don’t get a vicious cycle of warming in dry, boreal forests. Instead, we get the reverse, where warming actually prevents further warming from occurring,” said Steven Allison, ecology and evolutionary biology assistant professor and lead author of the study. “The Earth’s natural processes could give us some time to implement responsible policies to counteract warming globally.”

This study appears online Nov. 3 in the journal Global Change Biology.

Soils in the far north contain a lot of carbon from dead grasses, trees and shrubs. Like humans, fungi and bacteria in soil use plant carbon as a food source and convert it into carbon dioxide.

Allison and his colleague, Kathleen Treseder, sought to find out what happens to carbon dioxide levels when boreal forest soil not containing permafrost is warmed. About one-third of the world’s boreal forests do not contain permafrost, which is mostly located in Alaska, Canada, Western Siberia and Northern Europe.

Global warming is expected to hit northern latitudes hardest, raising temperatures between 5 and 7 degrees Celsius by the year 2100.

The scientists conducted their experiment in a spruce forest near Fairbanks, Alaska. They built small greenhouses and identified similar unheated plots nearby to serve as controls. Both plots received equal amounts of water.

In mid-May when growing season began, air and soil temperatures were the same in greenhouses and control plots. When greenhouses were closed, air temperature rose about 5 degrees Celsius, and soil temperature rose about 1 degree.

The scientists took measurements in the greenhouses and unheated plots and found that by growing season’s end in mid-August, soil in warmed greenhouses produced about half as much carbon dioxide as soil in cooler control plots.

A soil analysis found that about half as much active fungi were present in experimental greenhouse samples compared with samples from the controls. When fungi dry out, they either die or become inactive and stop producing carbon dioxide, the scientists said.

“It’s fortuitous for humans that the fungi are negatively affected by this warming,” said Treseder, ecology and evolutionary biology associate professor. “It’s not so great for the fungi, but might help offset a little bit of the carbon dioxide we are putting directly into the atmosphere by burning fossil fuels.”

This work was supported by the National Science Foundation, the U.S. Department of Energy, and a NOAA Climate and Global Change Postdoctoral Fellowship.

Lucy Collister | alfa
Further information:
http://www.zotwire.uci.edu
http://www.today.uci.edu

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>