Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dispersal patterns key to invasive species' success

21.01.2014
Bacterial test of a theory has implications for ecology and infectious disease

In 1859 an Australian farmer named Thomas Austin released 24 grey rabbits from Europe into the wild because it "could do little harm and might provide a touch of home, in addition to a spot of hunting."


One of the most damaging invasive species in history, kudzu, or Japanese arrowroot, found its way from Japan to the southeastern United States, where it is overtaking much of the landscape. An ecological concept known as the Allee effect governs the spread of invasive species and pathogens, according to a Duke University team that has tested the concept in engineered bacteria.

Credit: Wikipedia Commons

By the end of the century, the rabbits had begun to overrun native ecosystems, reaching nationwide numbers of 600 million by 1950. They were propagating under a principle known as the Allee effect - the observation that larger groups of animals do better at establishing populations in a new environment. Had Austin instead spread the rabbits into many smaller groups across the landscape, things might have turned out differently.

With the help of E. coli and some clever synthetic biology techniques, engineers at Duke University have now tested the limits of the Allee effect. The results have implications for both ecologists dealing with invasive species and medical practitioners fighting infections.

Organisms exhibiting a very strong Allee effect need a certain number of individuals to survive, below which the group will collapse. And while intuition suggests that the more places a species spreads, the more it will thrive, scattering a population too thin by forming too many new colonies could result in the ruin of them all.

The paper appears online in the Proceedings of the National Academy of Sciences the week of Jan. 20.

"From the perspective of an invasive species, it appears to be a good idea to spread out to many different habitats simultaneously," said Lingchong You, associate professor of biomedical engineering at Duke. "If they all survive, the overall growth is much more efficient. But there's a catch because of the Allee effect; there is also a greater chance each population will fall below the critical threshold and every location will fail."

"This can offer insights for people managing invasive species," continued You. "If you limit the number of targets that an invasive species can travel

into, you might inadvertently help them thrive."

In the experiment, researchers engineered E. coli to produce a toxin that, left to its own devices, would soon wipe out the entire colony of bacteria. But they also put in a genetic switch that could turn their fortunes around; if enough bacteria were present and the chemicals they use to signal one another reached a certain concentration, they would begin producing an antidote to the toxin. In this way, the bacteria were engineered to have a high Allee effect.

The researchers then tested how well the bacteria did with different dispersal rates. They plucked the bacteria from their original source wells and colonized new ones. Each trial consisted of a different number of target habitats, which affected the density of the new populations.

Just as theory predicted, the greatest success came when the dispersion rate stayed in a happy middle ground. Too few new colonies and the bacteria barely spread; too many and each floundered, including the original source.

The results also have important medical implications, according to You.

"People need to use caution when using antibiotics," said You. "Our bodies' natural microbes are in some ways the first line of defense against invaders, which can often stop an infection from gaining a foothold. But if we recklessly apply antibiotics, we may destroy these defenses and make it easier for just a few foreign bacteria to spread and grow. We may remove their Allee effect."

Their work was supported in part by the National Science Foundation grant CBET-0953202 and the National Institutes of Health grant 1R01GM098642.

CITATION: "Programmed Allee effect in bacteria causes a tradeoff between population spread and survival," Smith, R.P., Tan, C., Srimani, J.K., Pai, A., Riccione, K.A., Song, H., You, L. PNAS, Jan. 20, 2014. DOI: 10.1073/pnas.1315954111

Ken Kingery | EurekAlert!
Further information:
http://www.duke.edu

More articles from Ecology, The Environment and Conservation:

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Using drones to estimate crop damage by wild boars
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>