Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dingo Wrongly Blamed for Extinctions

11.09.2013
Dingoes have been unjustly blamed for the extinctions on the Australian mainland of the Tasmanian tiger (or thylacine) and the Tasmanian devil, a University of Adelaide study has found.

In a paper published in the journal Ecology, the researchers say that despite popular belief that the Australian dingo was to blame for the demise of thylacines and devils on the mainland about 3000 years ago, in fact Aboriginal populations and a shift in climate were more likely responsible.

“Perhaps because the public perception of dingoes as ‘sheep-killers’ is so firmly entrenched, it has been commonly assumed that dingoes killed off the thylacines and devils on mainland Australia,” says researcher Dr Thomas Prowse, Research Associate in the School of Earth and Environmental Sciences and the Environment Institute.

“There was anecdotal evidence too: both thylacines and devils lasted for over 40,000 years following the arrival of humans in Australia; their mainland extinction about 3000 years ago was just after dingoes were introduced to Australia; and the fact that thylacines and devils persisted on Tasmania, which was never colonised by dingoes.

“However, and unfortunately for the dingo, most people have overlooked that about the same time as dingoes came along, the climate changed rather abruptly and Aboriginal populations were going through a major period of intensification in terms of population growth and technological advances.”

The researchers built a complex series of mathematical models to recreate the dynamic interaction between the main potential drivers of extinction (dingoes, climate and humans), the long-term response of herbivore prey, and the viability of the thylacine and devil populations.

The models included interactions and competition between predators as well as the influence of climate on vegetation and prey populations.

The simulations showed that while dingoes had some impact, growth and development in human populations, possibly intensified by climate change, was the most likely extinction driver.

“Our multi-species models showed that dingoes could reduce thylacine and devil populations through both competition and direct predation, but there was low probability that they could have been the sole extinction driver,” Dr Prowse says.

“Our results support the notion that thylacines and devils persisted on Tasmania not because the dingo was absent, but because human density remained low there and Tasmania was less affected by abrupt climate changes.”

The study ‘An ecological regime shift resulting from disrupted predator-prey interactions in Holocene Australia’ also involved Professors Corey Bradshaw and Barry Brook from the University of Adelaide’s Environment Institute and Professor Chris Johnson from the University of Tasmania.

Media Contact:

Dr Thomas Prowse
Research Associate
School of Earth and Environmental Sciences Environment Institute
The University of Adelaide
Phone: +61 8 8313 6070
Mobile: +61 431 480 729
Professor Corey Bradshaw
Director, Ecological Modelling
School of Earth and Environmental Sciences
Environment Institute
The University of Adelaide
Mobile: +61 400 697 665
corey.bradshaw@adelaide.edu.au
Robyn Mills
Media and Communications Officer
The University of Adelaide
Phone: +61 8 8313 6341
Mobile: +61 410 689 084
robyn.mills@adelaide.edu.au

Robyn Mills | Newswise
Further information:
http://www.adelaide.edu.au

More articles from Ecology, The Environment and Conservation:

nachricht Scientists produce a new roadmap for guiding development & conservation in the Amazon
09.12.2016 | Wildlife Conservation Society

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>