Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dingo Wrongly Blamed for Extinctions

11.09.2013
Dingoes have been unjustly blamed for the extinctions on the Australian mainland of the Tasmanian tiger (or thylacine) and the Tasmanian devil, a University of Adelaide study has found.

In a paper published in the journal Ecology, the researchers say that despite popular belief that the Australian dingo was to blame for the demise of thylacines and devils on the mainland about 3000 years ago, in fact Aboriginal populations and a shift in climate were more likely responsible.

“Perhaps because the public perception of dingoes as ‘sheep-killers’ is so firmly entrenched, it has been commonly assumed that dingoes killed off the thylacines and devils on mainland Australia,” says researcher Dr Thomas Prowse, Research Associate in the School of Earth and Environmental Sciences and the Environment Institute.

“There was anecdotal evidence too: both thylacines and devils lasted for over 40,000 years following the arrival of humans in Australia; their mainland extinction about 3000 years ago was just after dingoes were introduced to Australia; and the fact that thylacines and devils persisted on Tasmania, which was never colonised by dingoes.

“However, and unfortunately for the dingo, most people have overlooked that about the same time as dingoes came along, the climate changed rather abruptly and Aboriginal populations were going through a major period of intensification in terms of population growth and technological advances.”

The researchers built a complex series of mathematical models to recreate the dynamic interaction between the main potential drivers of extinction (dingoes, climate and humans), the long-term response of herbivore prey, and the viability of the thylacine and devil populations.

The models included interactions and competition between predators as well as the influence of climate on vegetation and prey populations.

The simulations showed that while dingoes had some impact, growth and development in human populations, possibly intensified by climate change, was the most likely extinction driver.

“Our multi-species models showed that dingoes could reduce thylacine and devil populations through both competition and direct predation, but there was low probability that they could have been the sole extinction driver,” Dr Prowse says.

“Our results support the notion that thylacines and devils persisted on Tasmania not because the dingo was absent, but because human density remained low there and Tasmania was less affected by abrupt climate changes.”

The study ‘An ecological regime shift resulting from disrupted predator-prey interactions in Holocene Australia’ also involved Professors Corey Bradshaw and Barry Brook from the University of Adelaide’s Environment Institute and Professor Chris Johnson from the University of Tasmania.

Media Contact:

Dr Thomas Prowse
Research Associate
School of Earth and Environmental Sciences Environment Institute
The University of Adelaide
Phone: +61 8 8313 6070
Mobile: +61 431 480 729
Professor Corey Bradshaw
Director, Ecological Modelling
School of Earth and Environmental Sciences
Environment Institute
The University of Adelaide
Mobile: +61 400 697 665
corey.bradshaw@adelaide.edu.au
Robyn Mills
Media and Communications Officer
The University of Adelaide
Phone: +61 8 8313 6341
Mobile: +61 410 689 084
robyn.mills@adelaide.edu.au

Robyn Mills | Newswise
Further information:
http://www.adelaide.edu.au

More articles from Ecology, The Environment and Conservation:

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

nachricht 100 % Organic Farming in Bhutan – a Realistic Target?
15.06.2018 | Humboldt-Universität zu Berlin

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>