Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Better desalination technology key to solving world's water shortage

05.08.2011
Over one-third of the world's population already lives in areas struggling to keep up with the demand for fresh water. By 2025, that number will nearly double. Some countries have met the challenge by tapping into natural sources of fresh water, but as many examples – such as the much-depleted Jordan River – have demonstrated, many of these practices are far from sustainable.

A new Yale University study argues that seawater desalination should play an important role in helping combat worldwide fresh water shortages – once conservation, reuse and other methods have been exhausted – and provides insight into how desalination technology can be made more affordable and energy efficient.

"The globe's oceans are a virtually inexhaustible source of water, but the process of removing its salt is expensive and energy intensive," said Menachem Elimelech, a professor of chemical and environmental engineering at Yale and lead author of the study, which appears in the Aug. 5 issue of the journal Science.

Reverse osmosis – forcing seawater through a membrane that filters out the salt – is the leading method for seawater desalination in the world today. For years, scientists have focused on increasing the membrane's water flux using novel materials, such as carbon nanotubes, to reduce the amount of energy required to push water through it.

In the new study, Elimelech and William Phillip, now at the University of Notre Dame, demonstrate that reverse osmosis requires a minimum amount of energy that cannot be overcome, and that current technology is already starting to approach that limit. Instead of higher water flux membranes, Elimelech and Phillip suggest that the real gains in efficiency can be made during the pre- and post-treatment stages of desalination.

Seawater contains naturally occurring organic and particulate matter that must be filtered out before it passes through the membrane that removes the salt. Chemical agents are added to the water to clean it and help coagulate this matter for easier removal during a pre-treatment stage. But if a membrane didn't build up organic matter on its surface, most if not all pre-treatment could be avoided, according to the scientist's findings.

In addition, Elimelech and Phillip calculate that a membrane capable of filtering out boron and chloride would result in substantial energy and cost savings. Seventy percent of the world's water is used in agriculture, but water containing even low levels of boron and chloride – minerals that naturally occur in seawater – cannot be used for these purposes. Instead of removing them during a separate post-treatment stage, the scientists believe a membrane could be developed that would filter them more efficiently at the same time as the salt is removed.

Elimelech cautions that desalination should only be considered a last resort in the effort to provide fresh water to the world's populations and suggests that long-term research is needed to determine the impact of seawater desalination on the aquatic environment, but believes that desalination has a major role to play now and in the future.

"All of this will require new materials and new chemistry, but we believe this is where we should focus our efforts going forward," Elimelech said. "The problem of water shortage is only going to get worse, and we need to be ready to meet the challenge with improved, sustainable technology."

Suzanne Taylor Muzzin | EurekAlert!
Further information:
http://www.yale.edu

More articles from Ecology, The Environment and Conservation:

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

nachricht Scientists produce a new roadmap for guiding development & conservation in the Amazon
09.12.2016 | Wildlife Conservation Society

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>