Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coorong Fish Hedge Their Bets for Survival

27.03.2015

Analysis of the ear bones of the River Murray estuarine fish black bream has revealed how these fish ‘hedge their bets’ for population survival.

Published in the journal Biology Letters, University of Adelaide research has shown that within this single species of fish there are some individuals which migrate to different parts of the Coorong in South Australia, and some that generally stay in the one location. Black bream are important for recreational and commercial fishing.


Image by Zoe Doubleday, University of Adelaide. Permission to use with this story only.

A sectioned ear bone of black bream showing its growth rings.

“When we consider animal migration, we tend to think of large seasonal migrations of species like the humpback whale or the Arctic tern. We don’t often think of migratory behaviour that varies within populations,” says Professor Bronwyn Gillanders, from the University’s School of Biological Sciences and Environment Institute.

“But it appears that within the black bream Coorong population there is a ‘bet-hedging strategy’ that allows the fish to survive and persist in the Coorong over good times and bad.

“Migration to another area may be more favourable under drought conditions when the water becomes more saline and, conversely, when there is lots of fresh water coming in and there is lots of food readily available, it would be more beneficial for the fish to stay in the location. This probably helps to make the species more resistant to both climate and human-related change.”

The researchers used the ear bones of fish collected throughout the estuary to construct their findings. Fish ear bones provide much information through analysis of the trace elements they contain and the width of their growth rings.

“Like tree growth rings, the ear bones reveal the age of the fish and growth periods which correlate with the growth of the fish itself,” says Professor Gillanders. “When we measure the width of the growth increments, we can trace back to see how fast the fish was growing at a particular time and year.

“The bones can also tell us whether the fish is migratory or ‘resident’ by mapping the ratios of barium against calcium. The higher levels of barium indicate when the fish was in fresher water.”

Professor Gillanders found that 62% of the fish were resident and 38% were migratory. Models were used to investigate differences in annual growth between the two groups and construct a growth time series.

“Throughout the late 1990s and early 2000s resident fish had increased growth compared with migrant fish but this changed around 2005 when growth of migrant fish increases,” says Professor Gillanders. “This is likely to be a result of the deteriorating conditions in the Coorong and reflects the ability of the migratory fish to find more favourable conditions and source more food.”

This research was in collaboration with the South Australian Research and Development Institute (SARDI.

Media Contact:
Professor Bronwyn Gillanders
Southern Seas Ecology Laboratories
School of Biological Sciences and Environment Institute
The University of Adelaide
Phone: +61 8 8313 6235
Mobile: +61 417 036 235
bronwyn.gillanders@adelaide.edu.au

Robyn Mills
Media and Communications Officer
The University of Adelaide
Phone: +61 8 8313 6341
Mobile: +61 410 689 084
robyn.mills@adelaide.edu.au

Robyn Mills | newswise
Further information:
http://www.adelaide.edu.au

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Steep rise of the Bernese Alps

24.03.2017 | Earth Sciences

How cheetahs stay fit and healthy

24.03.2017 | Life Sciences

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>