Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Colour coded bacteria can spot oil spills or leaky pipes and storage tanks

11.09.2008
Oil spills and other environmental pollution, including low level leaks from underground pipes and storage tanks, could be quickly and easily spotted in the future using colour coded bacteria, scientists heard today (Thursday 11 September 2008) at the Society for General Microbiology's Autumn meeting being held this week at Trinity College, Dublin.

"Because bacteria have simple single-celled bodies it is relatively easy to equip them with a sensor and a brightly coloured 'reporter protein' which shows up under a microscope, alerting us to different substances leaking into the soil or seawater from oil spills, agricultural chemicals or other pollutants," says Professor Jan Van der Meer from the University of Lausanne in Switzerland.

Scientists have successfully shown that living bacteria can be used as a much more environmentally friendly way of detecting pollution than the currently used chemical methods of working out what has happened. "Chemical methods are often cumbersome, require sophisticated equipment, costly reagents or nasty materials," says Professor Van der Meer. "In comparison, our sensing bacteria are very simple to maintain. Tests with the bacteria are therefore extremely easy to carry out and do not require noxious chemicals."

"Our own tests, and checks by other laboratories, have shown that pollution testing using bacteria is a remarkably robust technique and produces reliable results," says Professor Van der Meer. "The heart of our colour sensor system is the bacteria themselves. They reproduce themselves in a growth medium, which makes the whole set-up really cheap,"

The new technique has already been successfully tested during a research expedition at sea, when the scientists demonstrated that the bacteria could measure different chemicals seeping from oil into the water, showing up as the blue light of bioluminescence in a simple light recording device.

"This can help to trace back the age of a spill and helps us to judge the immediate danger," says Professor Van der Meer. "The environmental benefits of this research are very clear. Our methods and results show how relatively simple and cheap assays could be used as a first line of defence to judge contamination in the environment. Once positive values are obtained, more in-depth studies can be performed using chemical analysis."

In principle, the same methods could also be used in hospitals or even to study food samples, according to the scientists. "Antibiotics in foodstuffs can be measured using bacteria-based assays and we have also measured arsenic contamination in rice," says Professor Van der Meer.

Technical research in this field is heading towards miniaturized sensors which can incorporate many different bacteria types, each of which responds to a different chemical. These miniaturized sensors could be used for rapid screening of samples with unknown compositions, such as water samples, but air could also be monitored for proper quality.

"You could imagine stand-alone systems such as buoys, in which bacteria sensors screen the presence of polluting compounds continuously. We don't think this will affect people in any way. The bacteria that are used for the sensing are harmless and do not multiply very well in the open environment," says Professor Van der Meer. "This makes it very safe. Although the bacteria are normally maintained in a closed laboratory environment for the assays, it means that in case of an accidental release the bacteria are unlikely to do any harm".

The main problem with detecting oil spills and other toxic compounds at the moment is that many of the most dangerous chemicals do not dissolve in water very well, making them difficult to detect. These oils also have a strong tendency to stick to surfaces like rocks - or seabirds and shellfish - where they can last for many years, making it tricky to detect small leaks or ancient sources of pollution.

"The bacteria can detect different mass transfer rates of the pollutants, and warn us how the pollution is spreading. The bacteria are also sensitive enough to tell between different soil types and the way these hold the pollution chemicals or release them in a way that plants, animals and humans can be affected," says Professor Van der Meer.

Lucy Goodchild | alfa
Further information:
http://www.sgm.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>