Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Colour coded bacteria can spot oil spills or leaky pipes and storage tanks

11.09.2008
Oil spills and other environmental pollution, including low level leaks from underground pipes and storage tanks, could be quickly and easily spotted in the future using colour coded bacteria, scientists heard today (Thursday 11 September 2008) at the Society for General Microbiology's Autumn meeting being held this week at Trinity College, Dublin.

"Because bacteria have simple single-celled bodies it is relatively easy to equip them with a sensor and a brightly coloured 'reporter protein' which shows up under a microscope, alerting us to different substances leaking into the soil or seawater from oil spills, agricultural chemicals or other pollutants," says Professor Jan Van der Meer from the University of Lausanne in Switzerland.

Scientists have successfully shown that living bacteria can be used as a much more environmentally friendly way of detecting pollution than the currently used chemical methods of working out what has happened. "Chemical methods are often cumbersome, require sophisticated equipment, costly reagents or nasty materials," says Professor Van der Meer. "In comparison, our sensing bacteria are very simple to maintain. Tests with the bacteria are therefore extremely easy to carry out and do not require noxious chemicals."

"Our own tests, and checks by other laboratories, have shown that pollution testing using bacteria is a remarkably robust technique and produces reliable results," says Professor Van der Meer. "The heart of our colour sensor system is the bacteria themselves. They reproduce themselves in a growth medium, which makes the whole set-up really cheap,"

The new technique has already been successfully tested during a research expedition at sea, when the scientists demonstrated that the bacteria could measure different chemicals seeping from oil into the water, showing up as the blue light of bioluminescence in a simple light recording device.

"This can help to trace back the age of a spill and helps us to judge the immediate danger," says Professor Van der Meer. "The environmental benefits of this research are very clear. Our methods and results show how relatively simple and cheap assays could be used as a first line of defence to judge contamination in the environment. Once positive values are obtained, more in-depth studies can be performed using chemical analysis."

In principle, the same methods could also be used in hospitals or even to study food samples, according to the scientists. "Antibiotics in foodstuffs can be measured using bacteria-based assays and we have also measured arsenic contamination in rice," says Professor Van der Meer.

Technical research in this field is heading towards miniaturized sensors which can incorporate many different bacteria types, each of which responds to a different chemical. These miniaturized sensors could be used for rapid screening of samples with unknown compositions, such as water samples, but air could also be monitored for proper quality.

"You could imagine stand-alone systems such as buoys, in which bacteria sensors screen the presence of polluting compounds continuously. We don't think this will affect people in any way. The bacteria that are used for the sensing are harmless and do not multiply very well in the open environment," says Professor Van der Meer. "This makes it very safe. Although the bacteria are normally maintained in a closed laboratory environment for the assays, it means that in case of an accidental release the bacteria are unlikely to do any harm".

The main problem with detecting oil spills and other toxic compounds at the moment is that many of the most dangerous chemicals do not dissolve in water very well, making them difficult to detect. These oils also have a strong tendency to stick to surfaces like rocks - or seabirds and shellfish - where they can last for many years, making it tricky to detect small leaks or ancient sources of pollution.

"The bacteria can detect different mass transfer rates of the pollutants, and warn us how the pollution is spreading. The bacteria are also sensitive enough to tell between different soil types and the way these hold the pollution chemicals or release them in a way that plants, animals and humans can be affected," says Professor Van der Meer.

Lucy Goodchild | alfa
Further information:
http://www.sgm.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>