Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate sensitivity greater than previously believed

21.12.2011
Many of the particles in the atmosphere are produced by the natural world, and it is possible that plants have in recent decades reduced the effects of the greenhouse gases to which human activity has given rise.

One consequence of this is that the climate may be more sensitive to emissions caused by human activity than we have previously believed. Scientists at the University of Gothenburg (Sweden) have collected new data that may lead to better climate models.

"Emissions by plants to the atmosphere are influenced by climate change – higher temperatures can increase the rate of the biological processes that control the emissions. If natural emissions increase as the temperature rises, this in turn increases the amount of particles that are formed", says Kent Salo of the Department of Chemistry at the University of Gothenburg

The interactions between particles and the climate constitute a very complex web of processes. The particles in the atmosphere consist to a large part of organic substances, which may arise from incomplete combustion in engines or boilers. Such substances may also arise from plant growth. Emissions from plants occur as gases, and are greater than emissions from other sources, in a global perspective.

Once released into the atmosphere, the gases from plants are converted by many chemical processes, such that they can eventually condense and form particles. The particles that are formed in chemical reactions in the atmosphere are known as "secondary organic aerosols" (abbreviated to "SOA"), and consist of a complex mixture of organic substances. The particles age and change with time, and this process influences the effects that the particles have on human health and on the climate.

"Particles in the atmosphere basically have a cooling effect on the Earth, and they affect cloud formation. The greater the number of particles in the air, the greater will be the number of cloud droplets. This affects the lifetime of the clouds and the amounts of precipitation, and consequently, the climate. Today, we do not have a fundamental understanding of how SOA particles are formed and the properties they have, despite them being an important component of, for example, climate models."

Kent Salo has studied organic substances that are known to be components of particles in the atmosphere and how their physical properties can be used in models to understand the complicated systems that the SOAs constitute, and the effect they have on the climate.

In order to study these processes, Kent Salo has developed a special instrument that measures the degree to which the particles evaporate when they are heated. He has carried out experiments at several major research facilities in Europe using this instrument.

Kent Salo | EurekAlert!
Further information:
http://www.gu.se

More articles from Ecology, The Environment and Conservation:

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Understanding animal social networks can aid wildlife conservation
23.06.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>