Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate sensitivity greater than previously believed

21.12.2011
Many of the particles in the atmosphere are produced by the natural world, and it is possible that plants have in recent decades reduced the effects of the greenhouse gases to which human activity has given rise.

One consequence of this is that the climate may be more sensitive to emissions caused by human activity than we have previously believed. Scientists at the University of Gothenburg (Sweden) have collected new data that may lead to better climate models.

"Emissions by plants to the atmosphere are influenced by climate change – higher temperatures can increase the rate of the biological processes that control the emissions. If natural emissions increase as the temperature rises, this in turn increases the amount of particles that are formed", says Kent Salo of the Department of Chemistry at the University of Gothenburg

The interactions between particles and the climate constitute a very complex web of processes. The particles in the atmosphere consist to a large part of organic substances, which may arise from incomplete combustion in engines or boilers. Such substances may also arise from plant growth. Emissions from plants occur as gases, and are greater than emissions from other sources, in a global perspective.

Once released into the atmosphere, the gases from plants are converted by many chemical processes, such that they can eventually condense and form particles. The particles that are formed in chemical reactions in the atmosphere are known as "secondary organic aerosols" (abbreviated to "SOA"), and consist of a complex mixture of organic substances. The particles age and change with time, and this process influences the effects that the particles have on human health and on the climate.

"Particles in the atmosphere basically have a cooling effect on the Earth, and they affect cloud formation. The greater the number of particles in the air, the greater will be the number of cloud droplets. This affects the lifetime of the clouds and the amounts of precipitation, and consequently, the climate. Today, we do not have a fundamental understanding of how SOA particles are formed and the properties they have, despite them being an important component of, for example, climate models."

Kent Salo has studied organic substances that are known to be components of particles in the atmosphere and how their physical properties can be used in models to understand the complicated systems that the SOAs constitute, and the effect they have on the climate.

In order to study these processes, Kent Salo has developed a special instrument that measures the degree to which the particles evaporate when they are heated. He has carried out experiments at several major research facilities in Europe using this instrument.

Kent Salo | EurekAlert!
Further information:
http://www.gu.se

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>