Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate sensitivity greater than previously believed

21.12.2011
Many of the particles in the atmosphere are produced by the natural world, and it is possible that plants have in recent decades reduced the effects of the greenhouse gases to which human activity has given rise.

One consequence of this is that the climate may be more sensitive to emissions caused by human activity than we have previously believed. Scientists at the University of Gothenburg (Sweden) have collected new data that may lead to better climate models.

"Emissions by plants to the atmosphere are influenced by climate change – higher temperatures can increase the rate of the biological processes that control the emissions. If natural emissions increase as the temperature rises, this in turn increases the amount of particles that are formed", says Kent Salo of the Department of Chemistry at the University of Gothenburg

The interactions between particles and the climate constitute a very complex web of processes. The particles in the atmosphere consist to a large part of organic substances, which may arise from incomplete combustion in engines or boilers. Such substances may also arise from plant growth. Emissions from plants occur as gases, and are greater than emissions from other sources, in a global perspective.

Once released into the atmosphere, the gases from plants are converted by many chemical processes, such that they can eventually condense and form particles. The particles that are formed in chemical reactions in the atmosphere are known as "secondary organic aerosols" (abbreviated to "SOA"), and consist of a complex mixture of organic substances. The particles age and change with time, and this process influences the effects that the particles have on human health and on the climate.

"Particles in the atmosphere basically have a cooling effect on the Earth, and they affect cloud formation. The greater the number of particles in the air, the greater will be the number of cloud droplets. This affects the lifetime of the clouds and the amounts of precipitation, and consequently, the climate. Today, we do not have a fundamental understanding of how SOA particles are formed and the properties they have, despite them being an important component of, for example, climate models."

Kent Salo has studied organic substances that are known to be components of particles in the atmosphere and how their physical properties can be used in models to understand the complicated systems that the SOAs constitute, and the effect they have on the climate.

In order to study these processes, Kent Salo has developed a special instrument that measures the degree to which the particles evaporate when they are heated. He has carried out experiments at several major research facilities in Europe using this instrument.

Kent Salo | EurekAlert!
Further information:
http://www.gu.se

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>