Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate negotiations relying on “dangerous” thresholds to avoid catastrophe will not succeed

16.10.2012
The identified critical threshold for dangerous climate change saying that the increase in global temperature should be below 2 degrees Celsius seems not to have helped the climate negotiations so far.
New research from the University of Gothenburg and Columbia University shows that negotiations based on such a threshold fail because its value is determined by Nature and is inherently uncertain. Climate negotiators should therefore focus on other collective strategies.

Presenting their results in the Proceedings of the National Academy of Sciences (PNAS), Astrid Dannenberg, Postdoc researcher at the Environmental Economics Unit, University of Gothenburg and Columbia University, and Professor Scott Barrett, Columbia University, explain the paradox of why countries would agree to a collective goal, aimed at reducing the risk of climate catastrophe, but act as if they were blind to this risk.

If the critical threshold for climate catastrophe could be identified with scientific certainty, their research suggests that countries very likely would propose a collective target certain to avoid catastrophe, would pledge to contribute their fair share to the global effort, and would act so as to fulfill their promises.

However, if there is scientific uncertainty about the climate threshold, countries are very likely to do less collectively than is needed to avert catastrophe. Dannenberg and Barrett, who provide experimental evidence, grounded in a new analytical framework, show that failure of negotiations is practically certain, because the climate threshold is determined by Nature, and uncertainty about its value is substantially irreducible.

“Climate negotiations are more complex that the game played by the participants in our experiment. The basic incentive problem, however, is the same and our research shows that scientific uncertainty about the dangerous threshold changes behavior dramatically,” Dannenberg says.

Their research may explain why the UN climate negotiations have been framed around meeting the 2 degrees Celsius threshold and why negotiators wanted the threshold to be determined by science rather than by politics because only the former would be credible. Yet, the emission reductions countries have pledged in Copenhagen in 2009 virtually guarantee that this target will be missed.

”We will not know until 2020 if the Copenhagen Accord pledges will be met, but if our results are a reliable guide, countries may end up emitting even more than they pledged – with potentially profound and possibly irreversible consequences. Our research suggests that negotiators should focus their attention on alternative strategies for collective action, such as trade restrictions or technology standards,” Barrett says.

For more information please contact Astrid Dannenberg (www.economics.handels.gu.se/english/staff/senior_lecturers-lecturers-_researchers/astrid-dannenberg/), ad2901@columbia.edu or Scott Barrett, sb3116@columbia.edu, Phone number +1-646-300-1437.
Article in PNAS: http://www.pnas.org/content/early/2012/10/05/1208417109

This work was supported by the Swedish Research Council for the Environment, Agricultural Sciences and Spatial Planning through the program Human Cooperation to Manage Natural Resources, www.efdinitiative.org/research/commons. The program is led by Professor Thomas Sterner

Karin Backteman | idw
Further information:
http://www.pnas.org/content/early/2012/10/05/1208417109

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>