Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate negotiations relying on “dangerous” thresholds to avoid catastrophe will not succeed

16.10.2012
The identified critical threshold for dangerous climate change saying that the increase in global temperature should be below 2 degrees Celsius seems not to have helped the climate negotiations so far.
New research from the University of Gothenburg and Columbia University shows that negotiations based on such a threshold fail because its value is determined by Nature and is inherently uncertain. Climate negotiators should therefore focus on other collective strategies.

Presenting their results in the Proceedings of the National Academy of Sciences (PNAS), Astrid Dannenberg, Postdoc researcher at the Environmental Economics Unit, University of Gothenburg and Columbia University, and Professor Scott Barrett, Columbia University, explain the paradox of why countries would agree to a collective goal, aimed at reducing the risk of climate catastrophe, but act as if they were blind to this risk.

If the critical threshold for climate catastrophe could be identified with scientific certainty, their research suggests that countries very likely would propose a collective target certain to avoid catastrophe, would pledge to contribute their fair share to the global effort, and would act so as to fulfill their promises.

However, if there is scientific uncertainty about the climate threshold, countries are very likely to do less collectively than is needed to avert catastrophe. Dannenberg and Barrett, who provide experimental evidence, grounded in a new analytical framework, show that failure of negotiations is practically certain, because the climate threshold is determined by Nature, and uncertainty about its value is substantially irreducible.

“Climate negotiations are more complex that the game played by the participants in our experiment. The basic incentive problem, however, is the same and our research shows that scientific uncertainty about the dangerous threshold changes behavior dramatically,” Dannenberg says.

Their research may explain why the UN climate negotiations have been framed around meeting the 2 degrees Celsius threshold and why negotiators wanted the threshold to be determined by science rather than by politics because only the former would be credible. Yet, the emission reductions countries have pledged in Copenhagen in 2009 virtually guarantee that this target will be missed.

”We will not know until 2020 if the Copenhagen Accord pledges will be met, but if our results are a reliable guide, countries may end up emitting even more than they pledged – with potentially profound and possibly irreversible consequences. Our research suggests that negotiators should focus their attention on alternative strategies for collective action, such as trade restrictions or technology standards,” Barrett says.

For more information please contact Astrid Dannenberg (www.economics.handels.gu.se/english/staff/senior_lecturers-lecturers-_researchers/astrid-dannenberg/), ad2901@columbia.edu or Scott Barrett, sb3116@columbia.edu, Phone number +1-646-300-1437.
Article in PNAS: http://www.pnas.org/content/early/2012/10/05/1208417109

This work was supported by the Swedish Research Council for the Environment, Agricultural Sciences and Spatial Planning through the program Human Cooperation to Manage Natural Resources, www.efdinitiative.org/research/commons. The program is led by Professor Thomas Sterner

Karin Backteman | idw
Further information:
http://www.pnas.org/content/early/2012/10/05/1208417109

More articles from Ecology, The Environment and Conservation:

nachricht Dune ecosystem modelling
23.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Understanding animal social networks can aid wildlife conservation
23.06.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>