Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate negotiations relying on “dangerous” thresholds to avoid catastrophe will not succeed

16.10.2012
The identified critical threshold for dangerous climate change saying that the increase in global temperature should be below 2 degrees Celsius seems not to have helped the climate negotiations so far.
New research from the University of Gothenburg and Columbia University shows that negotiations based on such a threshold fail because its value is determined by Nature and is inherently uncertain. Climate negotiators should therefore focus on other collective strategies.

Presenting their results in the Proceedings of the National Academy of Sciences (PNAS), Astrid Dannenberg, Postdoc researcher at the Environmental Economics Unit, University of Gothenburg and Columbia University, and Professor Scott Barrett, Columbia University, explain the paradox of why countries would agree to a collective goal, aimed at reducing the risk of climate catastrophe, but act as if they were blind to this risk.

If the critical threshold for climate catastrophe could be identified with scientific certainty, their research suggests that countries very likely would propose a collective target certain to avoid catastrophe, would pledge to contribute their fair share to the global effort, and would act so as to fulfill their promises.

However, if there is scientific uncertainty about the climate threshold, countries are very likely to do less collectively than is needed to avert catastrophe. Dannenberg and Barrett, who provide experimental evidence, grounded in a new analytical framework, show that failure of negotiations is practically certain, because the climate threshold is determined by Nature, and uncertainty about its value is substantially irreducible.

“Climate negotiations are more complex that the game played by the participants in our experiment. The basic incentive problem, however, is the same and our research shows that scientific uncertainty about the dangerous threshold changes behavior dramatically,” Dannenberg says.

Their research may explain why the UN climate negotiations have been framed around meeting the 2 degrees Celsius threshold and why negotiators wanted the threshold to be determined by science rather than by politics because only the former would be credible. Yet, the emission reductions countries have pledged in Copenhagen in 2009 virtually guarantee that this target will be missed.

”We will not know until 2020 if the Copenhagen Accord pledges will be met, but if our results are a reliable guide, countries may end up emitting even more than they pledged – with potentially profound and possibly irreversible consequences. Our research suggests that negotiators should focus their attention on alternative strategies for collective action, such as trade restrictions or technology standards,” Barrett says.

For more information please contact Astrid Dannenberg (www.economics.handels.gu.se/english/staff/senior_lecturers-lecturers-_researchers/astrid-dannenberg/), ad2901@columbia.edu or Scott Barrett, sb3116@columbia.edu, Phone number +1-646-300-1437.
Article in PNAS: http://www.pnas.org/content/early/2012/10/05/1208417109

This work was supported by the Swedish Research Council for the Environment, Agricultural Sciences and Spatial Planning through the program Human Cooperation to Manage Natural Resources, www.efdinitiative.org/research/commons. The program is led by Professor Thomas Sterner

Karin Backteman | idw
Further information:
http://www.pnas.org/content/early/2012/10/05/1208417109

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>