Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate change caused widespread tree death in California mountain range

12.08.2008
In just 30 years, plants moved up the mountain an average of 213 feet

Warmer temperatures and longer dry spells have killed thousands of trees and shrubs in a Southern California mountain range, pushing the plants' habitat an average of 213 feet up the mountain over the past 30 years, a UC Irvine study has determined.

White fir and Jeffrey pine trees died at the lower altitudes of their growth range in the Santa Rosa Mountains, from 6,400 feet to as high as 7,200 feet in elevation, while California lilacs died between 4,000-4,800 feet. Almost all of the studied plants crept up the mountain a similar distance, countering the belief that slower-growing trees would move slower than faster-growing grasses and wildflowers.

This study is the first to show directly the impact of climate change on a mountainous ecosystem by physically studying the location of plants, and it shows what could occur globally if the Earth's temperature continues to rise. The finding also has implications for forest management, as it rules out air pollution and fire suppression as main causes of plant death.

"Plants are dying out at the bottom of their ranges, and at the tops of their ranges they seem to be growing in and doing much better," said Anne Kelly, lead author of the study and a graduate student in the Department of Earth System Science at UCI. "The only thing that could explain this happening across the entire face of the mountain would be a change in the local climate."

The study appears online the week of Aug. 11 in the Proceedings of the National Academy of Sciences.

Kelly and Michael Goulden, Earth system science professor, studied the north face of the Santa Rosa Mountains, just south of Palm Desert near Idyllwild, Calif. In the past 30 years, the average temperature there rose about 2 degrees Fahrenheit. While overall precipitation increased, the area experienced longer periods of drought, specifically in 1987-1990 and 1999-2002.

They decided to study the area after learning that people who live and work there were speculating that climate change was causing the plants to die.

Kelly and Goulden began with a 1977 plant survey by researcher Jan Zabriskie that cataloged all plants along a five-mile vertical stretch through the desert scrub, pinyon-juniper woodland, and chaparral shrubland and conifer forest.

The UCI scientists went back to the same spot in 2006-07 and did another plant survey, in which they stretched a measuring tape along the route and physically identified and measured plants that covered the tape. Then with a computer, they compared their results with those of the 1977 survey.

In the UCI study, 141 different species were identified along the tape, but the final analysis focused on 10 that were most abundant at different elevations. Those species included white fir and Jeffrey pine trees; golden cup oak trees; sugar bush, California lilac, Muller scrub oak, creosote bush, ragweed, and brittle bush shrubs; and agave plants.

The mean elevation of nine of the 10 species rose, with an average gain of 213 feet.

"I was surprised by how nice the data looked and how unambiguous the signal was," Goulden said. "It is clear that ecosystems can respond rather rapidly to climate change."

The scientists say air pollution did not kill the trees or cause the shift because the area does not have unusually high carbon dioxide levels, and they did not observe the characteristic speckling on plants caused by ozone damage. Also, if it was pollution, all of the plants would be suffering, not just the ones at the bottom of their range.

Fire suppression also is not a culprit, they say. The fire regime there is normal, with the last major fire occurring in the 1940s.

"The plants should still be in a recovery phase where they are growing back in," Kelly said. "But they have stopped recovering and now are dying, which these plants should not be doing."

A study published recently in the journal Science also found that plant growth ranges are moving upward in a French mountain range, but its conclusions were based on historic databases, not a systematic, repeated measurement of plant cover. The UCI study also found that all types of plants, from pine trees to ragweed, moved up a similar distance, not just small, short-lived plants as found by the French scientists.

Jennifer Fitzenberger | EurekAlert!
Further information:
http://www.uci.edu

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>