Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cleansing toxic waste -- with vinegar

04.03.2009
Engineers and environmental scientists at the University of Leeds are developing methods of helping contaminated water to clean itself by adding simple organic chemicals such as vinegar.

The harmful chromium compounds found in the groundwater at sites receiving waste from former textiles factories, smelters, and tanneries have been linked to cancer, and excessive exposure can lead to problems with the kidneys, liver, lungs and skin.

The research team, led by Dr Doug Stewart from the School of Civil Engineering and Dr Ian Burke from the School of Earth and Environment, has discovered that adding dilute acetic acid (vinegar) to the affected site stimulates the growth of naturally-occurring bacteria by providing an attractive food source. In turn, these bacteria then cleanse the affected area by altering the chemical make-up of the chromium compounds to make them harmless.

"The original industrial processes changed these chemicals to become soluble, which means they can easily leach into the groundwater and make it unsafe, says Dr Burke. "Our treatment method reconverts the oxidised chromate to a non-soluble state, which means it can be left safely in the ground without risk to the environment. As it is no longer 'bio-available' it doesn't present any risk to the surrounding ecosystem."

Chromate chemicals have previously been successfully treated in situ in neutral Ph conditions, but this study is unique in that it concentrates on extremely alkaline conditions, which are potentially much more difficult to treat.

The current favoured method of dealing with such groundwater contaminants is to remove the soil to landfill, which can be costly, both financially and in terms of energy usage. The Leeds methods being developed will allow treatment to take place on site, which is safer, more energy efficient and much cheaper.

Dr Stewart says: "Highly alkaline chromium-related contaminants were placed in inadequate landfill sites in the UK right up until production stopped in the 1970's – and in some countries production of large quantities of these chemicals still continues today. The soluble and toxic by-products from this waste can spread into groundwater, and ultimately into local rivers, and therefore will remain a risk to the environment as long as they are untreated."

Current environmental regulations mean that before the team can test out its research findings in the field, they need water-tight proof that their methods can work, as it is illegal to introduce any substance into groundwater - even where it is contaminated - unless it has been shown to be beneficial.

"From the results we have so far I am certain that we can develop a viable treatment for former industrial sites where chromate compounds are a problem," says Dr Stewart. "Our next step is to further our understanding of the range of alkalinity over which our system can operate. As society becomes more environmentally-aware, new regulations demand that past mistakes are rectified and carbon footprints are reduced. By designing a clean-up method that promotes the growth of naturally occurring bacteria without introducing or engineering new bacteria, we are effectively hitting every environmental target possible."

The research, part funded by The Royal Society, is published online in the Journal of Ecological Engineering doi:10.1016/j.ecoleng.2008.12.028.

Jo Kelly | EurekAlert!
Further information:
http://www.leeds.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA eyes Pineapple Express soaking California

24.02.2017 | Earth Sciences

New gene for atrazine resistance identified in waterhemp

24.02.2017 | Agricultural and Forestry Science

New Mechanisms of Gene Inactivation may prevent Aging and Cancer

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>