Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cleansing toxic waste -- with vinegar

04.03.2009
Engineers and environmental scientists at the University of Leeds are developing methods of helping contaminated water to clean itself by adding simple organic chemicals such as vinegar.

The harmful chromium compounds found in the groundwater at sites receiving waste from former textiles factories, smelters, and tanneries have been linked to cancer, and excessive exposure can lead to problems with the kidneys, liver, lungs and skin.

The research team, led by Dr Doug Stewart from the School of Civil Engineering and Dr Ian Burke from the School of Earth and Environment, has discovered that adding dilute acetic acid (vinegar) to the affected site stimulates the growth of naturally-occurring bacteria by providing an attractive food source. In turn, these bacteria then cleanse the affected area by altering the chemical make-up of the chromium compounds to make them harmless.

"The original industrial processes changed these chemicals to become soluble, which means they can easily leach into the groundwater and make it unsafe, says Dr Burke. "Our treatment method reconverts the oxidised chromate to a non-soluble state, which means it can be left safely in the ground without risk to the environment. As it is no longer 'bio-available' it doesn't present any risk to the surrounding ecosystem."

Chromate chemicals have previously been successfully treated in situ in neutral Ph conditions, but this study is unique in that it concentrates on extremely alkaline conditions, which are potentially much more difficult to treat.

The current favoured method of dealing with such groundwater contaminants is to remove the soil to landfill, which can be costly, both financially and in terms of energy usage. The Leeds methods being developed will allow treatment to take place on site, which is safer, more energy efficient and much cheaper.

Dr Stewart says: "Highly alkaline chromium-related contaminants were placed in inadequate landfill sites in the UK right up until production stopped in the 1970's – and in some countries production of large quantities of these chemicals still continues today. The soluble and toxic by-products from this waste can spread into groundwater, and ultimately into local rivers, and therefore will remain a risk to the environment as long as they are untreated."

Current environmental regulations mean that before the team can test out its research findings in the field, they need water-tight proof that their methods can work, as it is illegal to introduce any substance into groundwater - even where it is contaminated - unless it has been shown to be beneficial.

"From the results we have so far I am certain that we can develop a viable treatment for former industrial sites where chromate compounds are a problem," says Dr Stewart. "Our next step is to further our understanding of the range of alkalinity over which our system can operate. As society becomes more environmentally-aware, new regulations demand that past mistakes are rectified and carbon footprints are reduced. By designing a clean-up method that promotes the growth of naturally occurring bacteria without introducing or engineering new bacteria, we are effectively hitting every environmental target possible."

The research, part funded by The Royal Society, is published online in the Journal of Ecological Engineering doi:10.1016/j.ecoleng.2008.12.028.

Jo Kelly | EurekAlert!
Further information:
http://www.leeds.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>