Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cleaning heavily polluted water at a fraction of the cost

30.10.2008
Eureka project E!2962 Euroenviron Biosorb-Tox has succeeded in developing a water treatment system for industrial oil polluted water at a tenth of the cost of other commercially available tertiary treatments, leaving water so clean it can be pumped safely back out to sea without endangering flora or fauna.

Wastewater from ships, oil refineries and other petrochemical industries is heavily contaminated with toxic compounds. Stringent EU regulations apply to its treatment and discharge since, if left untreated, these compounds are hazardous to our health, our coastlines and deadly to all forms of aquatic life when released into our waterways.

The most complete method of treating petrochemically polluted waste water is through a series of three stages involving physicochemical and biological processes. It is the third and final stage of the treatment that renders the water clean enough to be discharged into the sea. The process is complex, requiring a combination of bioreactor, chemical coagulation, granulated activated carbon or sorption technologies.

This tertiary stage is the most expensive part of the treatment. It can also cause fouling, the growth of undesirable bacteria and problems with the waste disposal of toxic sludge produced in the process, if it isn’t properly monitored.

“The cost of tertiary treatment is a big problem,” says Professor Viktoras Racys at the Kaunas University of Technology in Lithuania – the main project partner. “You can treat petrochemically polluted water effectively, but it costs a lot. We set out to find a stable process which was as cheap as possible.”

New solutions

The research group at the university’s environmental engineering department
had already developed and tested a new wastewater treatment model on a laboratory scale. “In order to apply our water treatment to large industrial practices we needed financial assistance from external sources. The Eureka partnership helped in doing this,” says Professor Racys.

Together with three partners, the project team came up with an ultra-efficient combination on an industrial scale. “We developed the treatment using three processes in one piece of equipment, a reactor,” explains Professor Racys. “We use sorption, bio-degradation and filtration. The pollutants are degraded by micro-organisms created within the reactor,” he says.

Teamwork

The project partners, all renowned experts in their field, came together from Sweden and Lithuania. The Environmental Chemistry Department of the University of Umeaa in Sweden specialises in the study of environmental problems caused by organic pollutants. Equipped with a cutting edge research laboratory, it provided the analysis and identification of the organic compounds contained in wastewater polluted with petrochemical products, using the latest technology. The department also developed procedures to evaluate these compounds and their degradation, and analyse the composition and toxicity of the sludge produced by the system.

A Swedish high-technology SME, Exposmeter, developed an in-line sampling and monitoring tool to measure the system’s efficiency in treating toxic compounds. It carried out full-scale tests on the operation of the equipment and validated the methods used, providing a set of standard operating procedures.

The design, manufacture and installation of the reactor was carried out by Dinaitas, a Lithuanian SME specialising in wastewater treatment plants and technologies. Dinaitas also took on the maintenance of the entire system once it was operational.

Astounding results

The system is already up and running, treating petrochemically polluted wastewater at Lithuanian oil company, Nasta. “It works great,” says Professor Racys. “We couldn’t believe the results the first time. It has a high capacity, processing 160 m3 per hour. The cost is 1 euro for every 3.5 litres. Effectively it’s 10 or 20 times better than what else is available.”

But that’s not the end of it. The purity of the end water is greatly enhanced. “The water before the treatment is highly polluted, containing 1 gram of pollutant per litre. After treatment it contains only 0.1 gram of pollutant per litre. This surpasses the EU standards and the water can be put straight back into the sea,” says Professor Racys.

After two years of daily operation, the system has proved to be stable and has spawned several academic publications. It is ready to use in sensitive environmental regions, for the treatment of oil production and refinery wastewater, ballast water, the run-off from car washes and car parks and any petroleum polluted wastewaters containing both legally regulated compounds and the most toxic or persistent compounds.

Professor Racys thinks the reactor can be improved and would like to take the work further forward at an industrial level. “I’m very much involved with it, as with most scientists, my work is like my child,” he says. He is looking for new industrial partners, however, with operating results already as good as these, they are proving hard to find.

Shar McKenzie | alfa
Further information:
http://www.eureka.be/biosorb-tox

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>