Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Let there be clean light: Kerosene lamps spew black carbon, should be replaced, study says

29.11.2012
The primary source of light for more than a billion people in developing nations is also churning out black carbon at levels previously overlooked in greenhouse gas estimates, according to a new study led by researchers at UC Berkeley and the University of Illinois.
Results from field and lab tests found that 7 to 9 percent of the kerosene in wick lamps — used for light in 250-300 million households without electricity — is converted to black carbon when burned. In comparison, only half of 1 percent of the emissions from burning wood is converted to black carbon.

Factoring in the new study results leads to a twentyfold increase in estimates of black carbon emissions from kerosene-fueled lighting. The previous estimates come from established databases used by the Intergovernmental Panel on Climate Change and others. One kilogram of black carbon, a byproduct of incomplete combustion and an important greenhouse gas, produces as much warming in a month as 700 kilograms of carbon dioxide does over 100 years, the authors said.

“The orange glow in flames comes from black carbon, so the brighter the glow, the more black carbon is being made,” said study principal investigator Tami Bond, associate professor of civil and environmental engineering at the University of Illinois at Urbana-Champaign. “If it’s not burned away, it goes into the atmosphere.”

The findings, published online this month in the journal Environmental Science & Technology, are coming out at the same time that the United Nations Climate Change Conference kicks off in Doha, Qatar. While officials from around the world are seeking effective policies and guidelines for cutting greenhouse gas emissions, the study authors note that the simple act of replacing kerosene lamps could pack a wallop toward that effort.

“There are no magic bullets that will solve all of our greenhouse gas problems, but replacing kerosene lamps is low-hanging fruit, and we don’t have many examples of that in the climate world,” said study co-author Kirk Smith, professor at UC Berkeley’s School of Public Health and director of the Global Health and Environment Program. “There are many inexpensive, cleaner alternatives to kerosene lamps that are available now, and few if any barriers to switching to them.”

Smith pointed to lanterns with light-emitting diodes that can be powered by solar cells or even advanced cookstoves that generate electricity from the heat produced. Such technology, said Smith, is already available in developing countries.

The researchers used kerosene lamps purchased in Uganda and Peru and conducted field experiments there to measure the emissions. They repeated the tests in the lab using wicks of varying heights and materials, and kerosene purchased in the United States as well as in Uganda.

The study authors noted that converting to cleaner light sources would not only benefit the planet, it would help improve people’s health. A recent epidemiological study in Nepal led by Smith and other researchers at UC Berkeley’s School of Public Health, for example, found that women who reported use of kerosene lamps in the home had 9.4 times the rate of tuberculosis compared with those who did not use such lamps.

“Getting rid of kerosene lamps may seem like a small, inconsequential step to take, but when considering the collective impact of hundreds of millions of households, it’s a simple move that affects the planet,” said study lead author Nicholas Lam, a UC Berkeley graduate student in environmental health sciences.

The Centers for Disease Control and Prevention, National Institute of Environmental Health Sciences, U.S. Agency for International Development and Environmental Protection Agency helped support this research.

Sarah Yang | EurekAlert!
Further information:
http://www.berkeley.edu
http://newscenter.berkeley.edu/2012/11/28/kerosene-lamps-black-carbon/

More articles from Ecology, The Environment and Conservation:

nachricht How nanoparticles flow through the environment
12.05.2016 | Schweizerischer Nationalfonds SNF

nachricht Protecting fisheries from evolutionary change
27.04.2016 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

Im Focus: Trojan horses for hospital bugs

Staphylococcus aureus usually is a formidable bacterial pathogen. Sometimes, however, weakened forms are found in the blood of patients. Researchers of the University of Würzburg have now identified one mutation responsible for that phenomenon.

Staphylococcus aureus is a bacterium that is frequently found on the human skin and in the nose where it usually behaves inconspicuously. However, once inside...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

Rutgers scientists help create world's largest coral gene database

24.05.2016 | Earth Sciences

New technique controls autonomous vehicles on a dirt track

24.05.2016 | Information Technology

Programmable materials find strength in molecular repetition

24.05.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>