Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clean Algae Biofuel Project Leads World in Productivity

05.11.2009
Australian scientists are achieving the world's best production rates of oil from algae grown in open saline ponds, taking them a step closer to creating commercial quantities of clean biofuel for the future.

A joint $3.3 million project led by Murdoch University in Perth, Western Australia, and involving the University of Adelaide in South Australia, now leads world algae biofuel research after more than 12 months of consistent results at both universities.

“It was previously believed impossible to grow large quantities of algae for biofuel in open ponds consistently and without contamination, but we've proven it can be done,” says Project Leader Professor Michael Borowitzka from Murdoch University.

The project has received $1.89 million funding from the Australian Government as part of the Asia-Pacific Partnership on Clean Development and Climate.

“This is the only biofuel project in Australia working simultaneously on all steps in the process of microalgal biofuels production, from microalgae culture, harvesting of the algae and extraction of oil suitable for biofuels production,” Professor Borowitzka says.

Professor Borowitzka says that due to the project’s success, construction of a multi-million dollar pilot plant to test the whole process on a larger scale will now begin in Karratha in the North-West in January and is expected to be operational by July.

“This is another potential growth industry and jobs generator for Western Australia and South Australia aside from mining – using our natural abundance of sunlight and year-round good climate,” he says.

“We have achieved production rates of 50 tonnes per hectare per year, over half of which is converted to oil. These high production rates are expected to increase at the new pilot plant due to the even better climatic conditions in Karratha.”

The first stage is costing $1.5 million and further funding is being sought for future stages estimated to cost between $5-10 million.

Professor Borowitzka says the cost of producing biofuel from algae has already dropped from $12 a kilo to below $4 in the past year, but the aim is to get it down to less than $1 a kilo.

Dr David Lewis from the University of Adelaide's School of Chemical Engineering says a key aspect of the project is to show that commercial levels of algae can be grown without competing for resources with food crops.

"The algae will grow on non-arable - even arid - land without any need for freshwater in cultivation,” Dr Lewis says.

“By contrast, crops such as canola need a lot of freshwater and good-quality farming land. Growing algae at an industrial scale also takes up significantly less land than that required by canola crops to produce the same amount of biofuel."

In addition to producing clean fuel, Professor Borowitzka from Murdoch says that during the growth of the algae, 60 tonnes of CO2 are fixed per hectare of algae each year.

One of the project’s international partners, major algae producer Parry Nutraceuticals in India, has also achieved high rates of carbon fixation. (South China University of Technology is the project’s other international partner.)

David Ellis | Newswise Science News
Further information:
http://www.adelaide.edu.au

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>