Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Charcoal Studied for Landfill Methane Containment

16.03.2012
Methane, often used for cooking and heating, is a potent greenhouse gas -- more than 20 times more effective at trapping atmospheric heat than carbon dioxide. A major source of slow methane leaks is old, abandoned landfills and town dumps.

While containing gas at these sites can be expensive, University of Illinois at Chicago researchers believe an effective and cheap way to trap it may be as easy as laying down a covering using charcoal as the key ingredient.

UIC civil and materials engineering professor Krishna Reddy and earth and environmental sciences research professor Jean Bogner think layers of biochar, either by itself or mixed with soil, can trap and hold on to escaping methane long enough for methanotropic bacteria to break it up, producing less-harmful carbon dioxide as a byproduct.

"Our concept is to design a cheap and effective cover system," said Reddy, who has done extensive research on landfill management solutions. "We've done preliminary studies on biochar and found it has the characteristic of being able to adsorb methane."

Biochar is charcoal made from biomass, such as wood and crop waste. It is basically carbon with high surface areas where bacteria cling, waiting to trap and consume any passing methane gas. Most methane escapes from old dumps or landfills before the bacteria can do its work. Biochar helps hold the gas in place.

Reddy and Bogner received a $350,000 research grant from the National Science Foundation to test biochar for use on landfills. The U.S. Environmental Protection Agency estimates there are at least 10,000 old or abandoned dumps and landfills around the country that could use an inexpensive containment cover to trap slow leaks of methane.

Reddy and Bogner will do lab analysis of biochar made from different sources, testing for ability to hold moisture, acidity levels, and ash content. They will determine which charcoals work best at containing methane, how well it works in soil mixes, and what thickness is needed to be effective.

Reddy said another advantage of biochar is that it helps oxygenate soil, providing an environment where methanotropic bacteria can flourish. It is a cheap, sustainable product that can be made from crop waste in a pyrolysis unit on site at a landfill. The process also produces a bio-gas or oil byproduct that can be used for fuel.

"Our lab data will be fed into a mathematical model that we'll use to scale up systems," Reddy said. "We'll do field testing to validate the model." The UIC project will take about three years.

"We want our model to serve as a design tool," Reddy said. "Every landfill site is different, but we hope our model can be used to analyze site-specific conditions to design an effective cover system."

"It's relatively cheap and it's a simple operation. We hope landfill operators and government regulators will like it," he said.

The NSF grant will support one undergraduate and two graduate student research assistants. Reddy also plans to discuss his research in graduate-level seminars, and in talks to government regulators and to middle- and high-school science teachers.

Paul Francuch | Newswise Science News
Further information:
http://www.uic.edu

More articles from Ecology, The Environment and Conservation:

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Using drones to estimate crop damage by wild boars
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>