Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Charcoal Studied for Landfill Methane Containment

16.03.2012
Methane, often used for cooking and heating, is a potent greenhouse gas -- more than 20 times more effective at trapping atmospheric heat than carbon dioxide. A major source of slow methane leaks is old, abandoned landfills and town dumps.

While containing gas at these sites can be expensive, University of Illinois at Chicago researchers believe an effective and cheap way to trap it may be as easy as laying down a covering using charcoal as the key ingredient.

UIC civil and materials engineering professor Krishna Reddy and earth and environmental sciences research professor Jean Bogner think layers of biochar, either by itself or mixed with soil, can trap and hold on to escaping methane long enough for methanotropic bacteria to break it up, producing less-harmful carbon dioxide as a byproduct.

"Our concept is to design a cheap and effective cover system," said Reddy, who has done extensive research on landfill management solutions. "We've done preliminary studies on biochar and found it has the characteristic of being able to adsorb methane."

Biochar is charcoal made from biomass, such as wood and crop waste. It is basically carbon with high surface areas where bacteria cling, waiting to trap and consume any passing methane gas. Most methane escapes from old dumps or landfills before the bacteria can do its work. Biochar helps hold the gas in place.

Reddy and Bogner received a $350,000 research grant from the National Science Foundation to test biochar for use on landfills. The U.S. Environmental Protection Agency estimates there are at least 10,000 old or abandoned dumps and landfills around the country that could use an inexpensive containment cover to trap slow leaks of methane.

Reddy and Bogner will do lab analysis of biochar made from different sources, testing for ability to hold moisture, acidity levels, and ash content. They will determine which charcoals work best at containing methane, how well it works in soil mixes, and what thickness is needed to be effective.

Reddy said another advantage of biochar is that it helps oxygenate soil, providing an environment where methanotropic bacteria can flourish. It is a cheap, sustainable product that can be made from crop waste in a pyrolysis unit on site at a landfill. The process also produces a bio-gas or oil byproduct that can be used for fuel.

"Our lab data will be fed into a mathematical model that we'll use to scale up systems," Reddy said. "We'll do field testing to validate the model." The UIC project will take about three years.

"We want our model to serve as a design tool," Reddy said. "Every landfill site is different, but we hope our model can be used to analyze site-specific conditions to design an effective cover system."

"It's relatively cheap and it's a simple operation. We hope landfill operators and government regulators will like it," he said.

The NSF grant will support one undergraduate and two graduate student research assistants. Reddy also plans to discuss his research in graduate-level seminars, and in talks to government regulators and to middle- and high-school science teachers.

Paul Francuch | Newswise Science News
Further information:
http://www.uic.edu

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>