Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Charcoal Studied for Landfill Methane Containment

16.03.2012
Methane, often used for cooking and heating, is a potent greenhouse gas -- more than 20 times more effective at trapping atmospheric heat than carbon dioxide. A major source of slow methane leaks is old, abandoned landfills and town dumps.

While containing gas at these sites can be expensive, University of Illinois at Chicago researchers believe an effective and cheap way to trap it may be as easy as laying down a covering using charcoal as the key ingredient.

UIC civil and materials engineering professor Krishna Reddy and earth and environmental sciences research professor Jean Bogner think layers of biochar, either by itself or mixed with soil, can trap and hold on to escaping methane long enough for methanotropic bacteria to break it up, producing less-harmful carbon dioxide as a byproduct.

"Our concept is to design a cheap and effective cover system," said Reddy, who has done extensive research on landfill management solutions. "We've done preliminary studies on biochar and found it has the characteristic of being able to adsorb methane."

Biochar is charcoal made from biomass, such as wood and crop waste. It is basically carbon with high surface areas where bacteria cling, waiting to trap and consume any passing methane gas. Most methane escapes from old dumps or landfills before the bacteria can do its work. Biochar helps hold the gas in place.

Reddy and Bogner received a $350,000 research grant from the National Science Foundation to test biochar for use on landfills. The U.S. Environmental Protection Agency estimates there are at least 10,000 old or abandoned dumps and landfills around the country that could use an inexpensive containment cover to trap slow leaks of methane.

Reddy and Bogner will do lab analysis of biochar made from different sources, testing for ability to hold moisture, acidity levels, and ash content. They will determine which charcoals work best at containing methane, how well it works in soil mixes, and what thickness is needed to be effective.

Reddy said another advantage of biochar is that it helps oxygenate soil, providing an environment where methanotropic bacteria can flourish. It is a cheap, sustainable product that can be made from crop waste in a pyrolysis unit on site at a landfill. The process also produces a bio-gas or oil byproduct that can be used for fuel.

"Our lab data will be fed into a mathematical model that we'll use to scale up systems," Reddy said. "We'll do field testing to validate the model." The UIC project will take about three years.

"We want our model to serve as a design tool," Reddy said. "Every landfill site is different, but we hope our model can be used to analyze site-specific conditions to design an effective cover system."

"It's relatively cheap and it's a simple operation. We hope landfill operators and government regulators will like it," he said.

The NSF grant will support one undergraduate and two graduate student research assistants. Reddy also plans to discuss his research in graduate-level seminars, and in talks to government regulators and to middle- and high-school science teachers.

Paul Francuch | Newswise Science News
Further information:
http://www.uic.edu

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>