Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Calcium Helps Evaluate Soil’s Ability to Retain Earth’s Carbon

24.07.2009
As carbon is released through fossil-fuel burning and changing land use, scientists are seeking a more accurate understanding of carbon storage and cycling. Calcium in rainfall may reveal soil's carbon storage potential.

Soils play a vital role in dealing with the environmental impacts of rising atmospheric carbon levels, primarily CO2, from natural and human activities. The Earth’s carbon budget is a dynamic process. As carbon is released through fossil-fuel burning and changing land use, scientists are seeking a more accurate understanding of carbon storage and cycling.

The Earth holds carbon in what scientists call pools, reservoirs of carbon stocks stored in and on the earth and oceans as organic and inorganic matter. Simplistically, organic carbon compounds are connected to plants or animals while inorganic carbon compounds are often linked to minerals or rocks. Soil is second only to the oceans as a carbon sink, pools into which more carbon flows in than out. Soil scientists have a better picture of soil organic carbon (SOC) – soil containing decaying plant and animal matter – than soil inorganic carbon (SIC). Scientists are now studying SIC, theorizing it may be a key area for forming and holding carbon, preventing it from returning to the atmosphere for eons.

A team of Experiment Station scientists from Clemson University and Virginia Tech analyzed the 12 major soil groups in the continental United States, ranking them for their potential ability to form new SIC based on average annual atmospheric wet deposition (AAAWD) of calcium (Ca) – that is, the amount of Ca2+ (ionic calcium) present in rainfall. The results were first presented at the Soil Science Society of America Annual Meeting in November 2007 in New Orleans, LA and recently have been published in the May-June 2009 issue of the Soil Science Society of America Journal.

The study evaluated AAAWD of Ca2+ from 1994 to 2003 within the continental United States by soil order, using spatial analysis of Ca2+ wet deposition data obtained from the National Atmospheric Deposition Program (NADP) and the State Soil Geographic (STATSGO) Database from the Natural Resources Conservation Service of the U.S. Department of Agriculture. Using geographic information system (GIS) software, spatial data layers were developed and averaged to create a final Ca2+ wet deposition map layer. The total Ca2+ wet deposition per soil order (in kg) was then calculated by combining the final average Ca2+ wet deposition map layer with the generalized soil order data layer.

Results from the study revealed that the total AAAWD of Ca2+ within the continental United States was 8.6 × 108 kg, which would be equivalent to the maximum theoretical formation of 2.6 × 108 kg of carbon as SIC, barring losses of Ca2+ due to competitive processes, such as plant uptake, erosion, and deep leaching. The soil orders receiving the highest area-normalized total AAAWD of Ca2+ were Alfisols and Mollisols, non-arid soils that are typically associated with the “bread-basket” regions of the United States.

Research team member Elena Mikhailova, a soil scientist at Clemson who originally conceived the research approach, stated “Formation of new carbonate minerals in soils – what scientists call pedogenic carbonates – represent a pathway by which atmospheric CO2 can be sequestered. Maps of potential SIC formation and storage based on wet Ca2+ deposition can aid in understanding terrestrial ecosystem inorganic carbon dynamics and the way it can be manipulated to decrease CO2 concentrations in the atmosphere.”

The research is part of an ongoing project at Clemson to study soil carbon, particularly inorganic carbon stocks, and its role in the global carbon budget. Studies will measure, profile and identify the soil carbon characteristics and regional distribution to understand conditions and develop predictive models for future soil inorganic carbon research.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at http://soil.scijournals.org/cgi/content/abstract/73/3/989.

Soil Science Society of America Journal, http://soil.scijournals.org, is a peer-reviewed international journal published six times a year by the Soil Science Society of America. Its contents focus on research relating to physics; chemistry; biology and biochemistry; fertility and plant nutrition; genesis, morphology, and classification; water management and conservation; forest, range, and wildland soils; nutrient management and soil and plant analysis; mineralogy; and wetland soils.

The Soil Science Society of America (SSSA) is a progressive, international scientific society that fosters the transfer of knowledge and practices to sustain global soils. Based in Madison, WI, and founded in 1936, SSSA is the professional home for 6,000+ members dedicated to advancing the field of soil science. It provides information about soils in relation to crop production, environmental quality, ecosystem sustainability, bioremediation, waste management, recycling, and wise land use.

SSSA supports its members by providing quality research-based publications, educational programs, certifications, and science policy initiatives via a Washington, DC, office. For more information, visit www.soils.org.

SSSA is the founding sponsor of an approximately 5,000-square foot exhibition, Dig It! The Secrets of Soil, opening July 19, 2008 at the Smithsonian's National Museum of Natural History in Washington, DC.

Sara Uttech | Newswise Science News
Further information:
http://www.soils.org

More articles from Ecology, The Environment and Conservation:

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

nachricht Species Richness – a false friend? Scientists want to improve biodiversity assessments
01.08.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>